454 research outputs found

    Electrical conductivity measured in atomic carbon chains

    Full text link
    The first electrical conductivity measurements of monoatomic carbon chains are reported in this study. The chains were obtained by unraveling carbon atoms from graphene ribbons while an electrical current flowed through the ribbon and, successively, through the chain. The formation of the chains was accompanied by a characteristic drop in the electrical conductivity. The conductivity of carbon chains was much lower than previously predicted for ideal chains. First-principles calculations using both density functional and many-body perturbation theory show that strain in the chains determines the conductivity in a decisive way. Indeed, carbon chains are always under varying non-zero strain that transforms its atomic structure from cumulene to polyyne configuration, thus inducing a tunable band gap. The modified electronic structure and the characteristics of the contact to the graphitic periphery explain the low conductivity of the locally constrained carbon chain.Comment: 21 pages, 9 figure

    Energetics and stability of nanostructured amorphous carbon

    Full text link
    Monte Carlo simulations, supplemented by ab initio calculations, shed light into the energetics and thermodynamic stability of nanostructured amorphous carbon. The interaction of the embedded nanocrystals with the host amorphous matrix is shown to determine in a large degree the stability and the relative energy differences among carbon phases. Diamonds are stable structures in matrices with sp^3 fraction over 60%. Schwarzites are stable in low-coordinated networks. Other sp^2-bonded structures are metastable.Comment: 11 pages, 7 figure

    In situ radiographic investigation of de lithiation mechanisms in a tin electrode lithium ion battery.

    Get PDF
    The lithiation and delithiation mechanisms of multiple Sn particles in a customized flat radiography cell were investigated by in amp; 8197;situ synchrotron radiography. For the first time, four de lithiation phenomena in a Sn electrode battery system are highlighted 1 amp; 8197;the de lithiation behavior varies between different Sn particles, 2 amp; 8197;the time required to lithiate individual Sn particles is markedly different from the time needed to discharge the complete battery, 3 amp; 8197;electrochemical deactivation of originally electrochemically active particles is reported, and 4 amp; 8197;a change of electrochemical behavior of individual particles during cycling is found and explained by dynamic changes of de lithiation pathways amongst particles within the electrode. These unexpected findings fundamentaly expand the understanding of the underlying de lithiation mechanisms inside commercial lithium ion batteries LIBs and would open new design principles for high performance next generation LIB

    Morphological evolution of electrochemically plated stripped lithium microstructures by synchrotron X ray phase contrast tomography

    Get PDF
    Due to its low redox potential and high theoretical specific capacity, Li metal has drawn worldwide research attention because of its potential use in next generation battery technologies such as Li S and Li O2. Unfortunately, uncontrollable growth of Li microstructures LmSs, e.g., dendrites, fibers during electrochemical Li stripping plating has prevented their practical commercialization. Despite various strategies proposed to mitigate LmS nucleation and or block its growth, a fundamental understanding of the underlying evolution mechanisms remains elusive. Herein, synchrotron in line phase contrast X ray tomography was employed to investigate the morphological evolution of electrochemically deposited dissolved LmSs nondestructively. We present a 3D characterization of electrochemically stripped Li electrodes with regard to electrochemically plated LmSs. We clarify fundamentally the origin of the porous lithium interface growing into Li electrodes. Moreover, cleavage of the separator caused by growing LmS was experimentally observed and visualized in 3D. Our systematic investigation provides fundamental insights into LmS evolution and enables us to understand the evolution mechanisms in Li electrodes more profoundl

    Theory of the anomalous Hall effect from the Kubo formula and the Dirac equation

    Full text link
    A model to treat the anomalous Hall effect is developed. Based on the Kubo formalism and on the Dirac equation, this model allows the simultaneous calculation of the skew-scattering and side-jump contributions to the anomalous Hall conductivity. The continuity and the consistency with the weak-relativistic limit described by the Pauli Hamiltonian is shown. For both approaches, Dirac and Pauli, the Feynman diagrams, which lead to the skew-scattering and the side-jump contributions, are underlined. In order to illustrate this method, we apply it to a particular case: a ferromagnetic bulk compound in the limit of weak-scattering and free-electrons approximation. Explicit expressions for the anomalous Hall conductivity for both skew-scattering and side-jump mechanisms are obtained. Within this model, the recently predicted ''spin Hall effect'' appears naturally

    Electronic transport through ordered and disordered graphene grain boundaries

    Get PDF
    The evolution of electronic wave packets (WPs) through grain boundaries (GBs) of various structures in graphene was investigated by the numerical solution of the time-dependent Schrödinger equation. WPs were injected from a simulated STM tip placed above one of the grains. Electronic structure of the GBs was calculated by ab-initio and tight-binding methods. Two main factors governing the energy dependence of the transport have been identified: the misorientation angle of the two adjacent graphene grains and the atomic structure of the GB. In case of an ordered GB made of a periodic repetition of pentagon-heptagon pairs, it was found that the transport at high and low energies is mainly determined by the misorientation angle, but the transport around the Fermi energy is correlated with the electronic structure of the GB. A particular line defect with zero misorientation angle Lahiri et al., behaves as a metallic nanowire and shows electron-hole asymmetry for hot electrons or holes. To generate disordered GBs, found experimentally in CVD graphene samples, a Monte-Carlo-like procedure has been developed. Results show a reduced transport for the disordered GBs, primarily attributed to electronic localized states caused by C atoms with only two covalent bonds. © 2013 Elsevier Ltd. All rights reserved
    • 

    corecore