The first electrical conductivity measurements of monoatomic carbon chains
are reported in this study. The chains were obtained by unraveling carbon atoms
from graphene ribbons while an electrical current flowed through the ribbon
and, successively, through the chain. The formation of the chains was
accompanied by a characteristic drop in the electrical conductivity. The
conductivity of carbon chains was much lower than previously predicted for
ideal chains. First-principles calculations using both density functional and
many-body perturbation theory show that strain in the chains determines the
conductivity in a decisive way. Indeed, carbon chains are always under varying
non-zero strain that transforms its atomic structure from cumulene to polyyne
configuration, thus inducing a tunable band gap. The modified electronic
structure and the characteristics of the contact to the graphitic periphery
explain the low conductivity of the locally constrained carbon chain.Comment: 21 pages, 9 figure