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Highlights 

 

1 A radiography cell for in operando X-ray radiography was designed and built. 

2 A self-assembled CR2032 coin cell was built for in operando neutron radiography. 

3 In operando X-ray and neuron radiography were conducted by using Si electrode half cells. 

 

  



 

Abstract 

Complementary in operando X-ray radiography and neutron radiography measurements were 

conducted to investigate and visualize the initial lithiation in silicon-electrode lithium-ion 

batteries. By means of X-ray radiography, a significant volume expansion of Si particles and 

the Si electrode during the first discharge was observed. In addition, many Si particles were 

found that never undergo electrochemical reactions. These findings were confirmed by 

neutron radiography, which, for the first time, showed the process of Li alloying with the Si 

electrode during initial lithiation. These results demonstrate that complementary X-ray and 

neutron radiography is a powerful tool to investigate the lithiation mechanisms inside Si-

electrode based lithium-ion batteries. 
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1 Introduction 

In operando and nondestructive methods of investigation and visualization are valuable for 

the study of lithium ion batteries (LIBs), which are believed to meet the future power 

requirements from consumer electronics to large-scale energy storage systems [1-5]. Previous 

in operando visualizations of LIBs have been realized through several dedicated 

electrochemical cells with “end/point” contact architecture between the active material [6], 

and ionic [7] or Li2O electrolyte [8] as well as with an open-cell configuration [9]. However, 

these electrochemical cells with the above mentioned features are inherently different from 

commercially available LIBs [10]. On the other hand, commercial available LIBs have been 

investigated by in situ X-ray diffraction (XRD) [11], nuclear magnetic resonance (NMR) [12] 

and Raman spectroscopy [13]. Nevertheless, these analytical tools are specialized only in 

revealing structural and compositional information without imaging ability and therefore do 

not provide effective spatially resolved information about the underlying de/lithiation 

mechanism. Obviously, in operando and nondestructive diagnostic techniques with the ability 

to temporally and spatially visualize de/lithiation processes inside commercially available 

LIBs might open up new opportunities for high-capacity and high-power electrode materials 

for next-generation energy storage systems. 

In the present work, by using a commercial CR2032 coin cell and a self-made radiography 

cell (radio-cell, which can adequately simulate a commercial CR2032 coin cell), we 

investigated and visualized the initial lithiation inside silicon-based LIBs via in operando X-

ray and neutron radiography measurements. By X-ray radiography, we have observed a 

significant volume expansion of Si particles and Si electrode during the first discharge. 

Moreover, we also observed that lots of Si particles never undergo electrochemical reactions. 

These results were further confirmed by the neutron radiography. In addition, by employing 



the neutron radiography, for the first time, the process of the Si particles and Si electrode 

alloying with Li during the first discharge were shown. The obtained results presented here, 

which cannot be deduced from macroscopic electrochemical characterizations and 

conventional structure/composition-probing techniques, expand our understanding of the 

underlying lithiation mechanisms in commercial LIBs and could show the way to new design 

principles for high-performance next-generation LIBs. 

 

2 Experimental sections 

2.1 Materials 

Amorphous silicon particles were received from Elkem AS, Norway. Polyvinylidene 

difluoride (PVDF) binder, carbon black, Celgard separator, CR2032 coin cells and lithium 

were purchased from MTI Cor. USA. 1M LiPF6 in a volume ratio (1:1) mixture of ethylene 

carbonate (EC) and dimethyl carbonate (DMC) as well as N-methyl pyrrolidone solvent 

(NMP) were purchased from Sigma Aldrich. Titanium (Ti) foil was obtained from ANKURO 

Int. GmbH, Germany. The housing of the X-ray radiography cell (“radio-cell”) was made of 

polyamide-imide (Torlon) from McMaster-Carr Company. 

2.2 X-ray radiography cell and CR2032 coin cell 

As schematically illustrated in Figure 1B, the in operando X-ray radio-cell consists of an 

upper housing (outer and inner diameters are 25 mm and 8  mm, resp., orange color), a sealing 

ring (yellow), a lithium plate (8 mm diameter, blue) connected to a copper wire, a separator 

(8 mm, gray), the Si/carbon electrode (green, cast on a titanium foil, size 2×2.5 mm
2
), a 

titanium foil current collector (length × width is 8 × 6 mm, thickness 5 µm, grey color), an 

annular copper current collector (outer and inner diameters are 10 mm and 6 mm, resp.) and a 

lower housing (outer and inner diameters are 25 mm and 12 mm, resp., orange). At the bottom 

of the lower housing part, two holes were drilled for the copper wire of the lithium plate as 



well as the wire of the annular copper current collector (not shown in Figure 1B). These two 

holes were sealed properly during cell assembly. 

The composite electrodes for both the X-ray radio-cell and the CR2032 coin cell were made 

of slurries with weight ratios of Si:carbon black:binder of 75:15:10 in NMP. For the X-ray 

radio-cell, the slurry was cast onto a 5-µm thick titanium foil. For the CR2032 coin cell, the 

electrode slurry was directly cast onto the positive casing. Sparsely-coated Si particle slurry 

was used to facilitate single particle characterization during both X-ray and neutron 

radiography. The effect of different binders on the electrochemical behavior of Si particles is 

worth studying in the future. To remove NMP, the material cast onto Ti foil and the coin cell 

casing were dried in an oven at 60 ℃ for 12 h. Before and after casting, the Ti foil and the 

CR2032 coin cell casing were weighed to determine the mass of the electrode material. The 

mass of the Si electrode in the radio-cell was around 1 mg, that of the Si electrode in the 

CR2032 cell around 1.1 mg. We used commercial 1M LiPF6 in a volume-ratio mixture (1:1) 

of ethylene carbonate (EC) and dimethyl carbonate (DMC) as electrolyte and the electrolyte 

was added to both cells by a syringe. Both cells were assembled in an argon-filled glovebox 

with humidity and oxygen levels below 0.1 ppm. After assembling these two cells, cyclic 

voltammetry (CV) was performed in the potential window of 0–2.5 V at a scan rate of 

1 mV·s
-1

 in an IviumStat by Ivium Technologies. Then, both cells were galvanostatically 

discharged during the in operando measurements. The discharge capacity and discharge 

current for both cells were calculated based on Si mass only. The current for the radio-cell 

was around 0.04 C, that of the CR2032 cell around 0.03 C. The employed different C rates for 

the CR2032 coin cell and the radio-cell may lead to the different electrochemical results, as 

shown in Figure 2C and 2D. It has to be noted that the same radio-cell was used for the CV 

scan and the in operando X-ray radiography. Different coin cells were used for the CV scan 

and the in operando neutron radiography. 



2.3 In operando X-ray radiography and neutron radiography 

Both X-ray and neutron radiography were performed at the Helmholtz-Zentrum Berlin, 

Germany. A schematic representation of the imaging setup is displayed in Figure 1C. For X-

ray radiography, an X-ray tube with voltage and current set to 60 kV and 166 µA, respectively, 

was used. Radiographies were continuously recorded by a flat panel detector (Hamamatsu, 

C7942SK-05) with a pixel size of 50 µm. Different magnification ratios (given by the 

distances between X-ray source, sample and detector) were chosen to provide a varied spatial 

resolution [14]. In the present paper, the source-to-object distance (SOD) was 58 mm, the 

source-to-detector distance (SDD) 500 mm. Thus one pixel represents 5.76 µm of the sample.  

Neutron radiography was carried out at the V7/CONRAD beamline at the BER II reactor [15]. 

The beamline provides neutrons with wavelengths between 2 and 6 Å with a maximum at 3 Å. 

The conical beam geometry is shaped by a pinhole placed at a distance of 5 m in front of the 

CR2032 coin cell. The detector system was based on a CCD camera integrated in a light-tight 

box comprising a scintillator screen and a lens system projecting the image from the 

scintillator via a mirror onto the CCD chip. The 16 bit CCD camera used (Andor DW-436N-

BV) has a Peltier-cooled chip with 2048 × 2048 pixels. The spatial resolution achieved was 

6.43 µm. 

2.4 Underlying principle of X-ray and neutron imaging 

Radiography with X-rays and neutrons is based on the attenuation of rays by the atoms of a 

sample and is determined by their respective scattering and absorption cross-sections as 

governed by the Beer-Lambert law,     (λ) 
  (λ) , where,    and   are the incident and 

transmitted beam intensities for a given wavelength λ,   is the attenuation coefficient and   

is the thickness of the sample [16]. SI (Supporting Information) Figure 1A shows the mass-

specific attenuation coefficient   , i. e. the linear coefficient   over the density ρ of an 

element, given as a function of the atomic number for all the elements from Z = 1 to Z = 92 



[16]. The values displayed as blue line in SI Figure 1A refer to X-rays of 100 keV energy. 

Clearly,    varies smoothly with increasing Z. This is because X-rays interact with the 

electronic shell, as shown in SI Figure 1B, and the interaction cross-section increases with the 

number of electrons, i.e. with atomic number [17]. SI Figure 1A further shows the mass 

attenuation coefficients for thermal neutrons (25 meV neutron energy, red dots) as a function 

of Z. Here, the trend is much less regular. The reason for this is that unlike X-rays neutrons 

interact directly with the atomic nucleus as illustrated in SI Figure 1B and this interaction 

depends on the internal configuration of a nucleus. While X-rays have higher interaction cross 

sections with Si (Z = 14) than with Li (Z = 3) and C (Z=6), neutrons interact stronger with Li 

than with Si and C. It has also to be noted that we have used titanium foil as the current 

collector instead of copper foil although titanium possesses a relatively lower conductivity. 

The reason is that titanium has a lower X-ray absorption compared with copper, which 

guarantees a better X-ray imaging. A quantitative comparison of the linear attenuation 

coefficients for X-rays and neutrons is shown in SI Figure 2. Specifically, the X-ray 

attenuation coefficients for Si and Li4.4Si are calculated to be 2.15 (cm
-1

) and 0.87 (cm
-1

) [18]. 

The neutron absorption coefficients for Si and Li4.4Si are calculated to be 0.017 (cm
-1

) and 

7.372 (cm
-1

) [19]. 

Considering the different interactions between X-rays and neutrons with the elements Si, C 

and Li, we built a custom-made plastic radiography cell (“radio-cell”) for X-ray radiography 

to directly observe the morphological changes of the Si electrode. We use a self-assembled 

commercial CR2032 coin cell for neutron radiography (because the easy neutron penetration 

through the steel casing) to directly visualize Si-Li alloying during the first discharge step.  

2.5 Data processing 

Both radiography datasets were processed with ImageJ. For the in operando X-ray 

radiography movie, 18 images were combined with a median filter in order to reduce the 



noise level. For in operando neutron radiography, 25 images were used in that way. More 

information concerning image processing is in given in the SI. 

 

3 Results and discussion 

A schematic illustration and a photograph of the self-made radio-cell are given in Figure 1, 

along with a schematic representation of the imaging setup (both for micro X-ray radiography 

and neutron radiography). The self-assembled CR2032 coin cell was used for the in operando 

neutron radiography. The radio-cell is used for in operando X-ray radiography. Both cells 

contain a distribution of Si particles ranging from 125 to 180 µm diameter [20]. The cyclic 

voltammetry (CV) scans of both cells are displayed in Figure 2. The broad cathodic peak at 

around 1.0 V for both radio-cell and coin cell, as well as the cathodic peak at 2.0 V for radio-

cell are intimately related to the side electrolyte decomposition of forming the solid 

electrolyte interface (SEI) during first cathodic scan [21]. A characteristic cathodic peak at 

around 0 V is suggestive of alloy formation of Li with Si [22]. During the following anodic 

scan, the anodic peaks at around 0.4 V and 1.0 V can be attributed respectively to the Li-Si 

de-alloying reaction and the oxidation reaction of byproduct compounds reduced at cathodic 

process [23]. The cells were characterized by X-ray radiography and neutron radiography 

during discharge. The resulting discharge curves are also shown in Figure 2.  

 



 

Figure 1 A, Photograph of the in operando X-ray radio-cell, B, Schematic illustration of the radio-cell as 

explained in the experimental section, C, Schematic representation of the experimental setup. From right to left: 

X-ray source (purple), beam (yellow), sample and sample table (green and gray), detector (blue). The neutron 

radiography setup is designed analogously. In both setups, the samples (X-ray radio-cell and neutron CR2032 

coin cell) were penetrated by the x-rays and neutrons along their axes. 

 



 

Figure 2 Electrochemical characterizations of the two types of cells used: A and B, CV scans of the radio-cell 

and CR2032 cell; C and D, first discharge curves of the radio-cell and CR2032 cell. Figure A and C are revised 

with permission from ref. 28. 

 

Overviews of the pristine state of the radio-cell and the CR2032 coin cell are displayed in 

Figure 3. The complete in operando investigations of discharge processes are presented in 

Supporting Movies (SMs). Figure 4 displays snapshots of the first discharge of the radio-cell 

during in operando X-ray radiography, Figure 5 the results obtained during the first discharge 

of the CR2032 coin cell by in operando neutron radiography.  

 



 

Figure 3 Overviews of the pristine state of the radio-cell (A) and CR2032 cell (B). In A, due to the low X-ray 

absorption of the plastic housing, lithium and separator, only the copper wire, the annular copper current 

collector and Si particles are visible. In B, materials with different neutron absorptions become visible as the 

neutrons pass through the coin cell materials. C, the enlarged part showing Si particles (black spots) as marked in 

A. E, enlarged part showing Si particles (white spots) as marked in B. D, Scanning electron microscopy (SEM) 

image taken using a Zeiss ultraplus microscope to show the typical particle shape found in the materials 

visualized by X-ray and neutron radiography. 



 

Figure 4 Snapshots from the in operando X-ray radiography sequence acquired during the first discharge. The 

letters from A to F refer to elapsing time (see also the time lable). The region encircled in yellow is the original 

area that has covered the electrode; from a to j, different states of the Si particles during first lithiation as marked 

by the red rectangle in A; G, histogram of the Si particle in green circle in a as a function of discharge state. The 

arrow implies the transformation from a lower transmission to a higher transmission. The length of the scale bar 

in A is 1 mm, that in a 100 µm. Revised with permission from ref. 28. More information is in SI. 

 

As can be seen from the in operando X-ray radiography in Figure 4, there is a volume 

expansion of the Si electrode during the first discharge. We tracked the particles enclosed by 

the red rectangle to investigate the morphological changes of individual Si particles during 

initial lithiation. From Figure 4a to 4j, the surface of the Si particles appears increasingly 

blurred and the well-known “core-shell” model reaction can be observed: during the discharge 

process, it is the shell of this particle that undergoes lithiation first (evidenced by the blurred 

contour) while the core remains un-changed. During further discharge, the lithiation front 



moves gradually from the shell to the core (evidenced by a growing gray LixSi shell and a 

shrinking dark Si core) as a function of lithiation state [24]. Comparing the pristine (green 

circle in Figure 4a) with the fully lithiated state (red circle in Figure 4j) of the Si particle, it is 

estimated that the diameter increased by as much as 130% during the first lithiation. More 

direct evidence for Li alloying into Si is given by the change of the X-ray transmission of the 

area containing just the particle as shown in Figure 4G, in which the leftmost peak can be 

attributed to the Si particle. Following the first lithiation, the Si peak increasingly moves to 

the right, implying that the Si particle is gradually transforming from the high-density Si 

phase to a lower-density LixSi phase (1<x<4.4) [25]. The results are in good agreement with 

previous ones [26]. However, we have also observed that many Si particles never undergo 

alloying during the first discharge, i.e. they are electrochemically inactive during the 

macroscopic discharge process on the battery level. Such particles are shown in the outer 

region in Figure 4A to 4F and appear dark throughout lithiation. Considering that the applied 

external current concentrates only on the electrochemically active particles [10], the presence 

of these electrochemically inactive Si particles explains the experimentally observed 

discrepancy between global electrochemical measurements and local spectroscopic data [27-

30]. More specific experiments aimed at clarifying the reasons of the inhomogeneous reaction 

are desirable. 

 



 

Figure 5 Snapshots from an in operando neutron radiography series taken during the first discharge: The 

sequence of letters from A to F refers to elapsing time (see also the time label). The region encircled in yellow is 

the original area that covers the initial electrode; from a to h, different states of the Si particle during first 

lithiation as marked in the 3rd red circular region in A, G, attenuation changes of regions 1, 2 and 3 defined in A 

as a function of slice number (discharge time). Note that the values in G are the relative change of the neutron 

attenuation coefficient. The scale bar in A is 400 µm, the scale bar in a 200 µm long. More information is in SI. 

 

Snapshots of a series of neutron radiographies taken in operando are shown in Figure 5. Here, 

Si particles appear white and the Si electrode gray because of the presence of carbon and 

electrolyte. The white region surrounding the Si electrode contains generated gas. Following 

the first discharge, we can clearly discern the gas movement and the electrolyte displacement 

driven by the generated gases. The results are in good agreement with previous observations 



[31-33]. Moreover, similar to the results of X-ray radiography, we can also observe an 

expansion of the Si electrode during the first lithiation. Furthermore, it follows from Figure 5a 

to 5h that during first lithiation the white Si particles gradually turn gray and finally, at the 

end of lithiation, dark. The reason is that a high density of lithium ions, flowing from lithium 

electrode or electrolyte during the first discharge, will alloy with Si with electrons from the 

current collector [34] and this large accumulation of lithium markedly increases the 

absorption of neutrons. A more direct evidence for the alloying of Si is given by changes of 

the neutron transmission as shown in Figure 5G. The transmission of neutrons through three 

different regions decreases gradually as a function of discharge time.  

The detailed volume expansion process of Si particle during lithiation is characterized by 

complementary in operando X-ray and neutron radiography. As clearly observed from Figure 

4a to Figure 4j, the lithiation starts by lithiating the surface of Si particle (evidenced by the 

emerged blurry contour of Si particle) due to that the surface diffusion of Li atoms is very fast 

compared to bulk lithiation [35]. This growing LixSi shell surrounds a shrinking unlithiated Si 

core, forming the well-known “core-shell” model reaction. During further discharge, the 

accumulation of Li and the associated addition of electron density to the core Si framework 

will continue to weaken the Si network, resulting in Si-Si bond brakeage and the formation of 

LixSi alloy [36]. The lithiation process can be clearly observed from the X-ray radiography 

results: the blurred gray LixSi alloy shell gradually grows at the expense of the dark 

unlithiated Si core during lithiation, accompanying this process is the significant volume 

expansion of Si particle. This process is further demonstrated by the neutron radiography, as 

shown in Figure 5a to Figure 5h: the original white Si particle gradually becomes gray and 

finally dark gray due to the formation of LixSi alloy. The accompanying volume expansion is 

also observed between the pristine white Si particle (green circle in Figure 5h) and the 

lithiated dark gray LixSi alloy (red circle in Figure 5h). 



This is the first time that Li alloying with a Si electrode during the first lithiation is 

investigated and visualized by neutron radiography. In addition, similar to what results from 

X-ray radiography, we have also observed that some Si particles (white spots) are 

electrochemically inactive throughout discharge. The currently observed electrochemically 

inactive electrode particles agrees well with previously reported heterogeneous de/lithiation 

among multiple electrode particles [37]. It has been suggested that the inhomogeneous contact 

between the active electrode particles and the conductive/binder agents, as well as the 

different C rates subjected to the cell may result in the observed heterogeneous lithiation 

process [10]. Resultantly, the complex electrode structure and the complicated morphology 

and conditions with respect to porosity, tortuosity, conductivity and percolation ability for the 

electrolyte may lead to inhomogeneous electrochemical reactions among ensemble active 

particles. The currently observed inactive Si particles cannot be characterized from 

conventional electrochemical characterizations and are believed to decrease the energy 

density of the cell. This result implies that future work in optimizing the entire electrode 

architecture that involve all electrode materials ionically and electronically connected to 

electrolyte and electric conducting network is highly desired. 

4 Conclusions 

Complementary in operando X-ray radiography and neutron radiography measurements were 

conducted to investigate and visualize the lithiation process in Si-anode lithium-ion batteries. 

For neutron radiography, a self-assembled commercial CR2032 coin cell was used. For X-ray 

radiography, a radiography-cell, which can adequately simulate the commercial CR2032 coin 

cell was designed and prepared. By X-ray radiography, a significant volume expansion of the 

Si particles and Si electrode during the first lithiation were observed. In addition, many Si 

particles were found that never undergo electrochemical reactions. These findings were 

confirmed by neutron radiography, which showed the process of lithiation of a Si electrode 



for the first time. These results also demonstrate that complementary X-ray and neutron 

radiography measurements are powerful investigation tools to study the lithiation mechanisms 

in Si-anode lithium-ion batteries. Investigations of the effects of different cycling rates and a 

quantitative analysis of lithium alloying kinetics should be carried out in the future. 
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