14 research outputs found

    Characteristic slip for five great earthquakes along the Fuyun fault in China

    No full text
    International audienceThe seismic hazard associated with an individual fault can be assessed from the distributions of slip and recurrence times of earthquakes. However, seismic cycle models that aim to predict rupture lengths and fault displacements of successive earthquakes on one fault remain poorly validated. It is therefore unknown whether individual fault segments rupture independently, producing earthquakes with a diverse range of magnitudes and recurrence times, or slip by characteristic amounts, with characteristic magnitudes. Here we use high-resolution satellite data to document the horizontal offsets of stream channels and terraces created by strike-slip motion on the Fuyun fault, Xinjiang, China, during five historical earthquakes. We find that the Ms 7.9 11 August 1931 earthquake produced a surface rupture with a length of 160km, dispersed over three different fault segments. The 290 measured stream channel and terrace offsets record an average slip of 6.3m. We use the degree of preservation of geomorphological markers to assign relative ages to individual fault offsets and identify at least four distinct older earthquakes. We find that these older earthquakes also produced fault offsets with a similar distribution to the 1931 earthquake. As the slip distributions during five successive earthquakes were so similar, we conclude that ruptures on the Fuyun fault obey a characteristic slip model

    Interaction of the Most Membranotropic Region of the HCV E2 Envelope Glycoprotein with Membranes. Biophysical Characterization

    Get PDF
    The previously identified membrane-active regions of the hepatitis C virus (HCV) E1 and E2 envelope glycoproteins led us to identify different segments that might be implicated in viral membrane fusion, membrane interaction, and/or protein-protein binding. HCV E2 glycoprotein contains one of the most membranotropic segments, segment 603–634, which has been implicated in CD81 binding, E1/E2 and E2/E2 dimerization, and membrane interaction. Through a series of complementary experiments, we have carried out a study of the binding and interaction with the lipid bilayer of a peptide corresponding to segment 603–634, peptide E2FP, as well as the structural changes induced by membrane binding that take place in both the peptide and the phospholipid molecules. Here, we demonstrate that peptide E2FP binds to and interacts with phospholipid model membranes, modulates the polymorphic phase behavior of membrane phospholipids, is localized in a shallow position in the membrane, and is probably oligomerized in the presence of membranes. These data support the role of E2FP in HCV-mediated membrane fusion, and sustain the notion that this segment of the E2 envelope glycoprotein, together with other segments of E2 and E1 glycoproteins, provides the driving force for the merging of the viral and target cell membranes
    corecore