195 research outputs found

    Dimensional and Temperature Crossover in Trapped Bose Gases

    Full text link
    We investigate the long-range phase coherence of homogeneous and trapped Bose gases as a function of the geometry of the trap, the temperature, and the mean-field interactions in the weakly interacting limit. We explicitly take into account the (quasi)condensate depletion due to quantum and thermal fluctuations, i.e., we include the effects of both phase and density fluctuations. In particular, we determine the phase diagram of the gas by calculating the off-diagonal one-particle density matrix and discuss the various crossovers that occur in this phase diagram and the feasibility of their experimental observation in trapped Bose gases.Comment: One figure added, typos corrected, refernces adde

    Extension of Bogoliubov theory to quasi-condensates

    Full text link
    We present an extension of the well-known Bogoliubov theory to treat low dimensional degenerate Bose gases in the limit of weak interactions and low density fluctuations. We use a density-phase representation and show that a precise definition of the phase operator requires a space discretisation in cells of size ll. We perform a systematic expansion of the Hamiltonian in terms of two small parameters, the relative density fluctuations inside a cell and the phase change over a cell. The resulting macroscopic observables can be computed in one, two and three dimensions with no ultraviolet or infrared divergence. Furthermore this approach exactly matches Bogoliubov's approach when there is a true condensate. We give the resulting expressions for the equation of state of the gas, the ground state energy, the first order and second order correlations functions of the field. Explicit calculations are done for homogeneous systems.Comment: 32 pages, 2 figures; typos corrected in revised versio

    Exact calculation of the skyrmion lifetime in a ferromagnetic Bose condensate

    Full text link
    The tunneling rate of a skyrmion in ferromagnetic spin-1/2 Bose condensates through an off-centered potential barrier is calculated exactly with the periodic instanton method. The prefactor is shown to depend on the chemical potential of the core atoms, at which level the atom tunnels. Our results can be readily extended to estimate the lifetime of other topological excitations in the condensate, such as vortices and monopoles.Comment: 16 pages, 4 figures, to appear Phys. Rev.

    Nonlinear dynamics of Bose-condensed gases by means of a low- to high-density variational approach

    Full text link
    We propose a versatile variational method to investigate the spatio-temporal dynamics of one-dimensional magnetically-trapped Bose-condensed gases. To this end we employ a \emph{q}-Gaussian trial wave-function that interpolates between the low- and the high-density limit of the ground state of a Bose-condensed gas. Our main result consists of reducing the Gross-Pitaevskii equation, a nonlinear partial differential equation describing the T=0 dynamics of the condensate, to a set of only three equations: \emph{two coupled nonlinear ordinary differential equations} describing the phase and the curvature of the wave-function and \emph{a separate algebraic equation} yielding the generalized width. Our equations recover those of the usual Gaussian variational approach (in the low-density regime), and the hydrodynamic equations that describe the high-density regime. Finally, we show a detailed comparison between the numerical results of our equations and those of the original Gross-Pitaevskii equation.Comment: 11 pages, 12 figures, submitted to Phys. Rev. A, January 200

    In-situ velocity imaging of ultracold atoms using slow--light

    Full text link
    The optical response of a moving medium suitably driven into a slow-light propagation regime strongly depends on its velocity. This effect can be used to devise a novel scheme for imaging ultraslow velocity fields. The scheme turns out to be particularly amenable to study in-situ the dynamics of collective and topological excitations of a trapped Bose-Einstein condensate. We illustrate the advantages of using slow-light imaging specifically for sloshing oscillations and bent vortices in a stirred condensate

    Hydrodynamic behavior in expanding thermal clouds of Rb-87

    Full text link
    We study hydrodynamic behavior in expanding thermal clouds of Rb-87 released from an elongated trap. At our highest densities the mean free path is smaller than the radial size of the cloud. After release the clouds expand anisotropically. The cloud temperature drops by as much as 30%. This is attributed to isentropic cooling during the early stages of the expansion. We present an analytical model to describe the expansion and to estimate the cooling. Important consequences for time-of-flight thermometry are discussed.Comment: 7 pages with 2 figure

    Dynamics of a classical gas including dissipative and mean field effects

    Full text link
    By means of a scaling ansatz, we investigate an approximated solution of the Boltzmann-Vlasov equation for a classical gas. Within this framework, we derive the frequencies and the damping of the collective oscillations of a harmonically trapped gas and we investigate its expansion after release of the trap. The method is well suited to studying the collisional effects taking place in the system and in particular to discussing the crossover between the hydrodynamic and the collisionless regimes. An explicit link between the relaxation times relevant for the damping of the collective oscillations and for the expansion is established.Comment: 4 pages, 1 figur

    Singular Short Range Potentials in the J-Matrix Approach

    Full text link
    We use the tools of the J-matrix method to evaluate the S-matrix and then deduce the bound and resonance states energies for singular screened Coulomb potentials, both analytic and piecewise differentiable. The J-matrix approach allows us to absorb the 1/r singularity of the potential in the reference Hamiltonian, which is then handled analytically. The calculation is performed using an infinite square integrable basis that supports a tridiagonal matrix representation for the reference Hamiltonian. The remaining part of the potential, which is bound and regular everywhere, is treated by an efficient numerical scheme in a suitable basis using Gauss quadrature approximation. To exhibit the power of our approach we have considered the most delicate region close to the bound-unbound transition and compared our results favorably with available numerical data.Comment: 14 pages, 5 tables, 2 figure

    Thermal compression of atomic hydrogen on helium surface

    Full text link
    We describe experiments with spin-polarized atomic hydrogen gas adsorbed on liquid 4^{4}He surface. The surface gas density is increased locally by thermal compression up to 5.5×10125.5\times10^{12} cm−2^{-2} at 110 mK. This corresponds to the onset of quantum degeneracy with the thermal de-Broglie wavelength being 1.5 times larger than the mean interatomic spacing. The atoms were detected directly with a 129 GHz electron-spin resonance spectrometer probing both the surface and the bulk gas. This, and the simultaneous measurement of the recombination power, allowed us to make accurate studies of the adsorption isotherm and the heat removal from the adsorbed hydrogen gas. From the data, we estimate the thermal contact between 2D hydrogen gas and phonons of the helium film. We analyze the limitations of the thermal compression method and the possibility to reach the superfluid transition in 2D hydrogen gas.Comment: 20 pages, 11 figure

    Mean field effects in a trapped classical gas

    Full text link
    In this article, we investigate mean field effects for a bosonic gas harmonically trapped above the transition temperature in the collisionless regime. We point out that those effects can play also a role in low dimensional system. Our treatment relies on the Boltzmann equation with the inclusion of the mean field term. The equilibrium state is first discussed. The dispersion relation for collective oscillations (monopole, quadrupole, dipole modes) is then derived. In particular, our treatment gives the frequency of the monopole mode in an isotropic and harmonic trap in the presence of mean field in all dimensions.Comment: 4 pages, no figure submitted to Phys. Rev.
    • 

    corecore