245 research outputs found

    Two simple systems with cold atoms: quantum chaos tests and nonequilibrium dynamics

    Full text link
    This article is an attempt to provide a link between the quantum nonequilibrium dynamics of cold gases and fifty years of progress in the lowdimensional quantum chaos. We identify two atomic systems lying on the interface: two interacting atoms in a harmonic multimode waveguide and an interacting two-component Bose-Bose mixture in a double-well potential. In particular, we study the level spacing distribution, the wavefunction statistics, the eigenstate thermalization, and the ability to thermalize in a relaxation process as such.Comment: 18 pages, 9 figure

    Organ-specific toxicity evaluation of stearamidopropyl dimethylamine (SAPDMA) surfactant using zebrafish embryos

    Get PDF
    Surfactants are widely used in the industry of detergents, household products, and cosmetics. SAPDMA is a cationic surfactant that is used mostly in cosmetics, conditioning agents and has recently gained attention as a corrosion inhibitor in the sea pipelines industry. In this regard, literature concerning the ecotoxicological classification of SAPDMA on aquatic animals is lacking. This study aims to evaluate the potential ecotoxicity of SAPDMA using the aquatic zebrafish embryo model. The potential toxic effects of SAPDMA were assessed by different assays. This includes (i) mortality/survival assay to assess the median lethal concentration (LC50); (ii) teratogenicity assay to assess the no observed effect concentration (NOEC); (iii) organ-specific toxicity assays including cardiotoxicity, neurotoxicity (using locomotion assay), hematopoietic toxicity (hemoglobin synthesis using o-dianisidine staining), hepatotoxicity (liver steatosis and yolk retention using Oil Red O (ORO) stain); (iv) cellular cytotoxicity (mitochondrial membrane potential) by measuring the accumulation of JC-1 dye into mitochondria. Exposure of embryos to SAPDMA caused mortality in a dose-dependent manner with a calculated LC50 of 2.3 mg/L. Thus, based on the LC50 value and according to the Fish and Wildlife Service (FWS) Acute Toxicity Rating Scale, SAPDMA is classified as “moderately toxic”. The No Observed Effect Concentration (NOEC) concerning a set of parameters including scoliosis, changes in body length, yolk, and eye sizes was 0.1 mg/L. At the same NOEC concentration (0.1 mg/L), no organ-specific toxicity was detected in fish treated with SAPDMA, except hepatomegaly with no associated liver dysfunctions. However, higher SAPDMA concentrations (0.8 mg/L) have dramatic effects on zebrafish organ development (eye, heart, and liver development). Our data recommend a re-evaluation of the SAPDMA employment in the industry setting and its strictly monitoring by environmental and public health agencies

    Microbiome engineering to combat antimicrobial resistance and upsurge productivity of food animals: a systematic review

    Get PDF
    Extensive antimicrobial usage in animal farming plays a prominent role in the antimicrobial resistance (AMR) crisis and is repeatedly highlighted as an area needing development under the ‘One Health’ approach. Alternative therapies such as microbiome products can be used as prophylaxis to help avoid infectious disease. However, a limited number of studies have focused on AMR-targeted microbiome products. We conducted this systematic review by using PRISMA guidelines to screen for literature that have evaluated food animals’ health when administrated with microbiome products targeting antimicrobial resistance (AMR) or antibiotic-resistant genes (ARGs). We searched and examined studies from SCOPUS, Web of Science, Embase, and Science direct databases for studies published up to November 2021, restricted to the English language. The findings of this review showed that microbiome products have a promising capability to tackle specific AMR/ARGs coupled with animal’s health and productivity improvement. Furthermore, our study showed that probiotics were the most favorable tested microbiome products, with the most targeted resistance being to tetracycline, macrolides, and beta-lactams. While microbiome products are promising alternatives to antibiotic prophylactics, there is a dearth of studies investigating their efficacy in targeting AMR. Thus, it is highly recommended to further investigate, develop, and improve the microbiome, to better understand its utility and circumvent its limitations.The authors thank Barzan holdings for the financial support

    Inter-Versus Intra-Host Sequence Diversity of pH1N1 and Associated Clinical Outcomes

    Get PDF
    The diversity of RNA viruses dictates their evolution in a particular host, community or environment. Here, we reported within- and between-host pH1N1virus diversity at consensus and sub-consensus levels over a three-year period (2015–2017) and its implications on disease severity. A total of 90 nasal samples positive for the pH1N1 virus were deep-sequenced and analyzed to detect low-frequency variants (LFVs) and haplotypes. Parallel evolution of LFVs was seen in the hemagglutinin (HA) gene across three scales: among patients (33%), across years (22%), and at global scale. Remarkably, investigating the emergence of LFVs at the consensus level demonstrated that within-host virus evolution recapitulates evolutionary dynamics seen at the global scale. Analysis of virus diversity at the HA haplotype level revealed the clustering of low-frequency haplotypes from early 2015 with dominant strains of 2016, indicating rapid haplotype evolution. Haplotype sharing was also noticed in all years, strongly suggesting haplotype transmission among patients infected during a specific influenza season. Finally, more than half of patients with severe symptoms harbored a larger number of haplotypes, mostly in patients under the age of five. Therefore, patient age, haplotype diversity, and the presence of certain LFVs should be considered when interpreting illness severity. In addition to its importance in understanding virus evolution, sub-consensus virus diversity together with whole genome sequencing is essential to explain variabilities in clinical outcomes that cannot be explained by either analysis alone

    Measurement of global polarization of {\Lambda} hyperons in few-GeV heavy-ion collisions

    Full text link
    The global polarization of {\Lambda} hyperons along the total orbital angular momentum of a relativistic heavy-ion collision is presented based on the high statistics data samples collected in Au+Au collisions at \sqrt{s_{NN}} = 2.4 GeV and Ag+Ag at 2.55 GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at GSI, Darmstadt. This is the first measurement below the strangeness production threshold in nucleon-nucleon collisions. Results are reported as a function of the collision centrality as well as a function of the hyperon transverse momentum (p_T) and rapidity (y_{CM}) for the range of centrality 0--40%. We observe a strong centrality dependence of the polarization with an increasing signal towards peripheral collisions. For mid-central (20--40%) collisions the polarization magnitudes are (%) = 6.0 \pm 1.3 (stat.) \pm 2.0 (syst.) for Au+Au and (%) = 4.6 \pm 0.4 (stat.) \pm 0.5 (syst.) for Ag+Ag, which are the largest values observed so far. This observation thus provides a continuation of the increasing trend previously observed by STAR and contrasts expectations from recent theoretical calculations predicting a maximum in the region of collision energies about 3 GeV. The observed polarization is of a similar magnitude as predicted by 3D fluid dynamics and the UrQMD plus thermal vorticity model and significantly above results from the AMPT model.Comment: 8 pages, 4 figure

    De Novo Transcriptome Sequencing in Anopheles funestus Using Illumina RNA-Seq Technology

    Get PDF
    BACKGROUND: Anopheles funestus is one of the primary vectors of human malaria, which causes a million deaths each year in sub-Saharan Africa. Few scientific resources are available to facilitate studies of this mosquito species and relatively little is known about its basic biology and evolution, making development and implementation of novel disease control efforts more difficult. The An. funestus genome has not been sequenced, so in order to facilitate genome-scale experimental biology, we have sequenced the adult female transcriptome of An. funestus from a newly founded colony in Burkina Faso, West Africa, using the Illumina GAIIx next generation sequencing platform. METHODOLOGY/PRINCIPAL FINDINGS: We assembled short Illumina reads de novo using a novel approach involving iterative de novo assemblies and "target-based" contig clustering. We then selected a conservative set of 15,527 contigs through comparisons to four Dipteran transcriptomes as well as multiple functional and conserved protein domain databases. Comparison to the Anopheles gambiae immune system identified 339 contigs as putative immune genes, thus identifying a large portion of the immune system that can form the basis for subsequent studies of this important malaria vector. We identified 5,434 1:1 orthologues between An. funestus and An. gambiae and found that among these 1:1 orthologues, the protein sequence of those with putative immune function were significantly more diverged than the transcriptome as a whole. Short read alignments to the contig set revealed almost 367,000 genetic polymorphisms segregating in the An. funestus colony and demonstrated the utility of the assembled transcriptome for use in RNA-seq based measurements of gene expression. CONCLUSIONS/SIGNIFICANCE: We developed a pipeline that makes de novo transcriptome sequencing possible in virtually any organism at a very reasonable cost ($6,300 in sequencing costs in our case). We anticipate that our approach could be used to develop genomic resources in a diversity of systems for which full genome sequence is currently unavailable. Our An. funestus contig set and analytical results provide a valuable resource for future studies in this non-model, but epidemiologically critical, vector insect

    The Influence of Recent Climate Change on Tree Height Growth Differs with Species and Spatial Environment

    Get PDF
    Tree growth has been reported to increase in response to recent global climate change in controlled and semi-controlled experiments, but few studies have reported response of tree growth to increased temperature and atmospheric carbon dioxide (CO2) concentration in natural environments. This study addresses how recent global climate change has affected height growth of trembling aspen (Populus tremuloides Michx) and black spruce (Picea mariana Mill B.S.) in their natural environments. We sampled 145 stands dominated by aspen and 82 dominated by spruce over the entire range of their distributions in British Columbia, Canada. These stands were established naturally after fire between the 19th and 20th centuries. Height growth was quantified as total heights of sampled dominant and co-dominant trees at breast-height age of 50 years. We assessed the relationships between 50-year height growth and environmental factors at both spatial and temporal scales. We also tested whether the tree growth associated with global climate change differed with spatial environment (latitude, longitude and elevation). As expected, height growth of both species was positively related to temperature variables at the regional scale and with soil moisture and nutrient availability at the local scale. While height growth of trembling aspen was not significantly related to any of the temporal variables we examined, that of black spruce increased significantly with stand establishment date, the anomaly of the average maximum summer temperature between May-August, and atmospheric CO2 concentration, but not with the Palmer Drought Severity Index. Furthermore, the increase of spruce height growth associated with recent climate change was higher in the western than in eastern part of British Columbia. This study demonstrates that the response of height growth to recent climate change, i.e., increasing temperature and atmospheric CO2 concentration, did not only differ with tree species, but also their growing spatial environment

    Identification of Prognostic Metabolomic Biomarkers at the Interface of Mortality and Morbidity in Pre-Existing TB Cases Infected With SARS-CoV-2

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection currently remains one of the biggest global challenges that can lead to acute respiratory distress syndrome (CARDS) in severe cases. In line with this, prior pulmonary tuberculosis (TB) is a risk factor for long-term respiratory impairment. Post-TB lung dysfunction often goes unrecognized, despite its relatively high prevalence and its association with reduced quality of life. In this study, we used a metabolomics analysis to identify potential biomarkers that aid in the prognosis of COVID-19 morbidity and mortality in post-TB infected patients. This analysis involved blood samples from 155 SARS-CoV-2 infected adults, of which 23 had a previous diagnosis of TB (post-TB), while 132 did not have a prior or current TB infection. Our analysis indicated that the vast majority (~92%) of post-TB individuals showed severe SARS-CoV-2 infection, required intensive oxygen support with a significantly high mortality rate (52.2%). Amongst individuals with severe COVID-19 symptoms, we report a significant decline in the levels of amino acids, notably the branched chains amino acids (BCAAs), more so in the post-TB cohort (FDR <= 0.05) in comparison to mild and asymptomatic cases. Indeed, we identified betaine and BCAAs as potential prognostic metabolic biomarkers of severity and mortality, respectively, in COVID-19 patients who have been exposed to TB. Moreover, we identified serum alanine as an important metabolite at the interface of severity and mortality. Hence, our data associated COVID-19 mortality and morbidity with a long-term metabolically driven consequence of TB infection. In summary, our study provides evidence for a higher mortality rate among COVID-19 infection patients who have history of prior TB infection diagnosis, which mandates validation in larger population cohorts

    Meeting of the Ecosystem Approach Correspondence Group on on Pollution Monitoring (CorMon Pollution)

    Get PDF
    In accordance with the UNEP/MAP Programme of Work adopted by COP 21 for the biennium 2020-2021, the United Nations Environment Programme/Mediterranean Action Plan-Barcelona Convention Secretariat (UNEP/MAP) and its Programme for the Assessment and Control of Marine Pollution in the Mediterranean (MED POL) organized the Meeting of the Ecosystem Approach Correspondence Group on Pollution Monitoring (CorMon on Pollution Monitoring). The Meeting was held via videoconference on 26-27 April 2021. 2. The main objectives of the Meeting were to: a) Review the Monitoring Guidelines/Protocols for IMAP Common Indicator 18, as well as the Monitoring Guidelines/Protocols for Analytical Quality Assurance and Reporting of Monitoring Data for IMAP Common Indicators 13, 14, 17, 18 and 20; b) Take stock of the state of play of inter-laboratory testing and good laboratory practice related to IMAP Ecological Objectives 5 and 9; c) Analyze the proposal for the integration and aggregation rules for IMAP Ecological Objectives 5, 9 and 10 and assessment criteria for contaminants and nutrients; d) Recommend the ways and means to strengthen implementation of IMAP Pollution Cluster towards preparation of the 2023 MED Quality Status Report

    DEEP MORPHOLOGICAL and SPECTRAL STUDY of the SNR RCW 86 with FERMI-LAT

    Get PDF
    RCW 86 is a young supernova remnant (SNR) showing a shell-type structure at several wavelengths and is thought to be an efficient cosmic-ray (CR) accelerator. Earlier \textit{Fermi} Large Area Telescope results reported the detection of γ\gamma-ray emission coincident with the position of RCW 86 but its origin (leptonic or hadronic) remained unclear due to the poor statistics. Thanks to 6.5 years of data acquired by the \textit{Fermi}-LAT and the new event reconstruction Pass 8, we report the significant detection of spatially extended emission coming from RCW 86. The spectrum is described by a power-law function with a very hard photon index (Γ=1.42±0.1stat±0.06syst\Gamma = 1.42 \pm 0.1_{\rm stat} \pm 0.06_{\rm syst}) in the 0.1--500 GeV range and an energy flux above 100 MeV of (2.912.91 ±\pm 0.8stat0.8_{\rm stat} ±\pm 0.12syst0.12_{\rm syst}) ×\times 101110^{-11} erg cm2^{-2} s1^{-1}. Gathering all the available multiwavelength (MWL) data, we perform a broadband modeling of the nonthermal emission of RCW 86 to constrain parameters of the nearby medium and bring new hints about the origin of the γ\gamma-ray emission. For the whole SNR, the modeling favors a leptonic scenario in the framework of a two-zone model with an average magnetic field of 10.2 ±\pm 0.7 μ\muG and a limit on the maximum energy injected into protons of 2 ×\times 1049^{49} erg for a density of 1 cm3^{-3}. In addition, parameter values are derived for the North-East (NE) and South-West (SW) regions of RCW 86, providing the first indication of a higher magnetic field in the SW region.The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d’Études Spatiales in France. GD and EG are members of CIC-CONICET (Argentina), LD is Fellow of CONICET (Argentina). They are supported through grants from CONICET and ANPCyT (Argentina). We acknowledge to Estela Reynoso and Anne Green who collaborated in the first stages of the HI data acquisition and preocessing.This is the author accepted manuscript. It first appeared from the Institute of Physics via http://dx.doi.org/10.3847/0004-637X/819/2/9
    corecore