2,206 research outputs found

    A Hybrid Approach Combining Conceptual Hydrological Models, Support Vector Machines and Remote Sensing Data for Streamflow Simulation

    Get PDF
    Understanding catchment response to rainfall events is important for accurate runoff estimation in many water-related applications, including water resources management. This study introduced a hybrid model, the Tank-least squared support vector machine (LSSVM), that incorporated intermediate state variables from a conceptual tank model within the least squared support vector machine (LSSVM) framework in order to describe aspects of the rainfall-runoff (RR) process. The efficacy of the Tank-LSSVM model was demonstrated with hydro-meteorological data measured in the Yongdam Catchment between 2007 and 2016, South Korea. We first explored the role of satellite soil moisture (SM) data (i.e., European Space Agency (ESA) CCI) in the rainfall-runoff modeling. The results indicated that the SM states inferred from the ESA CCISWI provided an effective means of describing the temporal dynamics of SM. Further, the Tank-LSSVM model’s ability to simulate daily runoff was assessed by using goodness of fit measures (i.e., root mean square error, Nash Sutcliffe coefficient (NSE), and coefficient of determination). The Tank-LSSVM models’ NSE were all classified as “very good” based on their performance during the training and testing periods. Compared to individual LSSVM and Tank models, improved daily runoff simulations were seen in the proposed Tank-LSSVM model. In particular, low flow simulations demonstrated the improvement of the Tank-LSSVM model compared to the conventional tank model

    Hydrological modelling under climate change considering nonstationarity and seasonal effects

    Get PDF
    Traditional hydrological modelling assumes that the catchment does not change with time. However, due to changes of climate and catchment conditions, this stationarity assumption may not be valid in the future. It is a challenge to make the hydrological model adaptive to the future climate and catchment conditions. In this study IHACRES, a conceptual rainfall–runoff model, is applied to a catchment in southwest England. Long observation data (1961–2008) are used and seasonal calibration (only the summer) has been done since there are significant seasonal rainfall patterns. Initially, the calibration is based on changing the model parameters with time by adapting the parameters using the step forward and backward selection schemes. However, in the validation, both models do not work well. The problem is that the regression with time is not reliable since the trend may not be in a monotonic linear relationship with time. Therefore, a new scheme is explored. Only one parameter is selected for adjustment while the other parameters are set as the fixed and the regression of one optimised parameter is made not only against time but climate condition. The result shows that this nonstationary model works well both in the calibration and validation periods.</jats:p

    A Development of Multi-Site Rainfall Simulation Model Using Piecewise Generalize Pareto Distribution

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Comparison Of Interpolation Technique For Rain Gauge Data Through The Distributed Rainfall-Runoff Model

    Full text link
    Precipitation estimated from different measuring techniques such as rain gauge, radar and satellite have some similarities, but there are also differences among them. For example, techniques based on radar and satellite data underestimate rainfall than those using rain gauge data. In addition, many different interpolation techniques have been used to measure spatial pattern of precipitation but it is still difficult to have an accurate pattern by any one of them. The differences between the rainfall estimates from different techniques vary seasonally as well as regionally so that the radar or satellites are not directly applied into hydrologic analysis. In this regard, a main objective of this study is to develop a systematic way to interpolate ground rain gauge using discharge data from distributed rainfall-runoff model The spatial rainfall patterns estimated from the interpolation methods will be evaluated with the object function to minimize the difference between observed and estimated discharge. In other words, this study seeks to identify the optimal spatial pattern in rain field that can generate a similar pattern of observed discharge through the distributed rainfall-runoff model. This study will compare the spatial pattern from different types of climate systems and different seasons derived from different interpolation methods may help to validate the proposed algorithms
    • …
    corecore