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Abstract  29 

A multivariate stochastic soil moisture estimation approach based on a Gaussian-mixture 30 

nonstationary hidden Markov model (GM-NHMM) is introduced in this study to spatially 31 

disaggregate the AMSR2 soil moisture data for multiple locations in the Yongdam dam 32 

watershed in South Korea. Rainfall and air temperature are considered as additional 33 

predictors in the proposed modeling framework. In GM-NHMM, a six-state model is 34 

constructed with three predictors representing an unobserved state associated with soil 35 

moisture. It is clearly seen that the rainfall predictor plays a substantial role in achieving the 36 

overall predictability. Using weather variables (i.e., rainfall and temperature) can be effective 37 

in picking up some of the predictability of local soil moisture that is not captured by the 38 

AMSR2 data. On the other hand, larger scale dynamic features identified from the AMSR2 39 

data seem to facilitate the identification of regional spatial patterns of soil moisture. The 40 

efficiency of the proposed model is compared with that of an ordinary regression model 41 

(OLR) using the same predictors. The mean correlation coefficient of the proposed model is 42 

about 0.78, which is significantly greater than that of the OLR at about 0.49. The proposed 43 

GM-NHMM method not only provides a better representation of the observed SM than the 44 

OLR model but also preserves the spatial coherence across all stations reasonably well. 45 

 46 

Keywords: Soil moisture, stochastic model, AMSR2, spatial downscaling, Gaussian mixture 47 

model, and nonstationary hidden Markov model 48 
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1. Introduction 50 

 51 

Soil moisture (SM) is a key hydrologic state variable for understanding hydrologic processes, 52 

including runoff, infiltration, drought, crop growth, and many other phenomena closely 53 

related to soil conditions (Albergel et al., 2008; Barrett and Petropoulos, 2013; Brocca et al., 54 

2011; Zhao and Li, 2013), even though the amount of water in the soil profile accounts for 55 

less than 0.001 % of the total global water budget (Barrett and Petropoulos, 2013). Thus, 56 

acquiring accurate SM information has been a priority in hydrology, meteorology, and 57 

climatology. SM data can be obtained in several ways, including in-situ measurements, 58 

remote sensing techniques, and soil moisture accounting models. However, each approach 59 

has its own advantages and limitations, so different data sources are often integrated to 60 

mitigate individual limitations. For more details, the reader is kindly referred to, e.g., Brocca 61 

et al., (2017a), Owe et al., (2008), Parajka et al., (2006), and Zhuo and Han, (2016). 62 

In-situ SM observations are generally regarded as the most reliable measurement to validate 63 

remotely sensed soil moisture products. The reason for using in-situ SMs is their robustness 64 

with respect to the SM retrieved through either remote sensing techniques or soil moisture 65 

accounting models. However, in many parts of the world, it remains challenging to collect 66 

spatially and temporally suitable ground-based soil moisture data (Brocca et al., 2017b; Peng 67 

et al., 2017; Zhuo and Han, 2016). Another issue is that in-situ SM observations are rarely 68 

representative of large-scale SM (Griesfeller et al., 2016; Merlin et al., 2012; Reichle et al., 69 

2007), and hydrological analysis is typically conducted on a catchment scale. Considering the 70 

limitations of using point-based SM measurements, satellite remote sensing has become an 71 

alternative way to monitor SM conditions on a regional scale (Brocca et al., 2011), providing 72 

more comprehensive and coherent coverage both spatially and temporally to better 73 

understand soil moisture variability in the context of water resource management (Zhao and 74 

Li, 2013).  75 
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Satellite-based active and passive microwave sensors have the potential advantage of 76 

estimating SM spatial fields. Specifically, microwave remote sensing techniques use a longer 77 

wavelength than visible and infrared radiation, so they are less affected by cloud coverage, 78 

haze, rainfall, and many other weather conditions (Barrett and Petropoulos, 2013; Zhao and 79 

Li, 2013). SM data retrieved from various remote sensing sensors, such as Advanced 80 

Microwave Scanning Radiometer 2 (AMSR2; JAXA, 2013) , the Soil Moisture Ocean 81 

Salinity Satellite (SMOS; Kerr et al., 2012), Soil Moisture Active Passive (SMAP; Das et al., 82 

2011), and the Advanced Scatterometer (ASCAT; Albergel et al., 2008), have become widely 83 

available in recent years, providing reasonable accuracy over a wide area with relatively high 84 

spatial–temporal resolution. In the past few decades, many studies have explored the 85 

accuracy of microwave sensors and improved their applicability to hydrology (Brocca et al., 86 

2017a; Cenci et al., 2016; Parajka et al., 2006; Zhuo and Han, 2016). The challenges 87 

associated with these efforts have in turn led to the introduction of new methods to facilitate 88 

the suitable use of satellite-based SM measurements with a reasonable degree of accuracy. 89 

One major challenge in using satellite SM data for practical applications is their coarse spatial 90 

resolution and uncertainties stemming from an inability to resolve sub-grid scale variability. 91 

To overcome those limitations, various statistical approaches have used a downscaling 92 

framework to achieve a higher spatial resolution for microwave SM data (Merlin et al., 2012; 93 

Peng et al., 2016; Piles et al., 2014; Ranney et al., 2015; Zhao and Li, 2013). Those 94 

techniques can be divided into two categories: statistical and dynamic downscaling 95 

approaches. The downscaling methods also vary depending on the type of data being studied, 96 

such as radar, optical/thermal, topography, or soil information data (Peng et al., 2017). 97 

Optical/thermal sensor data (generally vegetation index, surface temperature, albedo, etc.) 98 

have been widely used to disaggregate the original satellite SM products into fine-scale 99 

estimates because they not only provide land surface parameters at higher spatial resolution 100 
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(Peng et al., 2016; Piles et al., 2011; Zhao and Li, 2013) but also have a significant 101 

correlation with soil moisture (Fang and Lakshmi, 2014; Peng et al., 2015; Srivastava et al., 102 

2013). The basic idea behind these approaches is to build a statistical model (based on the 103 

relationship between the satellite SM products and surface parameters) that can simulate SM 104 

sequences using given surface parameters as predictors. The most frequently reported 105 

practical limitation of this approach is that optical and thermal properties can be obtained 106 

only under clear-sky conditions (Djamai et al., 2016; Park et al., 2017). Geo-information 107 

data, such as topography, soil attributes, and vegetation, have also been used to disaggregate 108 

coarse-scale SM values into fine-scale ones using a regression framework (Busch et al., 2012; 109 

Ranney et al., 2015).  110 

During the past few decades, machine learning techniques have been used to spatially 111 

downscale satellite-based SM data for enhanced spatial resolution (Im et al., 2016; Park et al., 112 

2017; Srivastava et al., 2013; Xing et al., 2017). For example, Srivastava et al. (2013) tested 113 

and compared several machine learning techniques, including an artificial neural network, a 114 

support vector machine, and a relevance vector machine, to spatially downscale the SMOS 115 

SM data sets. Specifically, they used Moderate Resolution Imaging Spectro-radiometer 116 

(MODIS) land surface temperature as auxiliary information in disaggregating the SMOS SM 117 

products. Park et al. (2017) developed a downscaling scheme based on a modified regression 118 

tree model that combined multiple sensors (AMSR2 and ASCAT) with four other predictors: 119 

MODIS land surface temperature, the normalized difference vegetation index, land cover, 120 

and a digital elevation model.  121 

However, the existing approaches all largely depend on a linear or nonlinear regression 122 

model to spatially downscale the satellite SM products without considering the stochastic 123 

nature of soil moisture dynamics. The spatiotemporal dynamics of soil moisture content 124 

result from complicated and mutually related processes of hydro-meteorological elements, 125 
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such as subsurface flow, lateral flow, infiltration, precipitation, climate, and soil (Botter et al., 126 

2007; Ridolfi et al., 2003). The influence of spatiotemporal variability in precipitation and 127 

temperature on the slow-varying behavior of basin-scale SM can be better represented within 128 

a stochastic modeling framework (Botter et al., 2007). Recently, a stochastic downscaling 129 

technique, a nonstationary Markov model with a gamma (or exponential) distribution, has 130 

been widely used in both hydrology and meteorology (Cioffi et al., 2017; Khalil et al., 2010; 131 

Mehrotra and Sharma, 2005; Robertson et al., 2004). The stochastic downscaling approaches 132 

have been mainly used for rainfall simulation at multiple locations (Cioffi et al., 2017; Khalil 133 

et al., 2010; Kwon et al., 2011, 2009, Mehrotra and Sharma, 2010, 2006; Robertson et al., 134 

2004; Stehlík and Bárdossy, 2002); they have rarely been applied to SM data by means of a 135 

multivariate downscaling framework (no literature regarding SM has been found). 136 

Given this background, we here investigate the following questions: 137 

(1) Can daily soil moisture sequences conditional on intraseasonal variability in 138 

climate be effectively clustered and discretized as a small set of states? In 139 

addition, can the identified states of daily soil moisture and their transition 140 

probability be explicitly considered to better characterize soil moisture 141 

dynamics? 142 

(2) Is it desirable to use a nonstationary stochastic model that considers climate 143 

variables such as precipitation, temperature, and satellite-based soil moisture 144 

products as predictors? Does a combination of climate variables and satellite-145 

based soil moisture better inform simulations? 146 

(3) Can the proposed stochastic modeling framework be applied to simultaneously 147 

simulate the daily sequences of soil moisture at multiple locations on a watershed 148 

scale?  149 
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We here propose a multivariate Gaussian mixture nonstationary hidden Markov model (GM-150 

NHMM), which is primarily based on Hughes et al., (1999) and Yoo et al., (2015), to 151 

investigate those questions, with the intention of providing a practical tool for the estimation 152 

of daily soil moisture on the watershed scale for use in agricultural drought monitoring and 153 

hydrologic modeling. In-situ SM observations at multiple stations are here used as a 154 

dependent variable, and both air temperature and rainfall, as well as the AMSR2 data, are 155 

considered as predictors. The proposed downscaling approach is applied to the Yongdam 156 

dam watershed in South Korea. The performance of the proposed downscaling scheme is then 157 

validated with 6 in-situ observations through a cross-validation procedure.  158 

 159 

2. Study Area and Data 160 

2.1 Site description and observation data 161 

In this study, we apply the spatial downscaling approach to satellite SM measurements for 162 

multiple stations in the Yongdam dam watershed in southwestern Korea (35.6°–36.0°N 163 

latitude and 127.3°–127.7°E longitude). Most of the in-situ SM observation stations in this 164 

catchment are in the forest, and the dominant soil type consists of sand (62.1 %), loam (20.7 165 

%), and silt (17.0 %). The average annual precipitation and air temperature during the 166 

investigation period (2014–2016) were 1,147 mm and 11.4˚C, respectively. Figure 1 shows 167 

the study area and six in-situ soil moisture stations where precipitation data were also 168 

measured (http://www.ydew.or.kr/kdrum/main/main.do). Here, precipitation data are 169 

averaged over the entire region. Additionally, air temperature (available for download from 170 

https://data.kma.go.kr/cmmn/main.do) was measured at the Jangsu weather station operated 171 

by the Korea Meteorological Administration (https://web.kma.go.kr/eng/). The soil moisture 172 

observation network covers a drainage area of 930 km2 with elevation ranging from 209 to 173 

1,588 m a.s.l. The Korea Water Resources Corporation has continuously recorded in-situ SM 174 

http://www.ydew.or.kr/kdrum/main/main.do
https://web.kma.go.kr/eng/
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observations measured at half-hourly time interval since 2014 using a time domain 175 

reflectometer (TDR; Topp et al., 1980). The specifications for the observation sites used in 176 

this study are given in Table 1. Depth-averaged SM representing the mean soil moisture 177 

content in the soil layer 0-60cm were used for subsequent study. 178 

 179 

[Insert Figure 1 and Table 1] 180 

 181 

2.2 Satellite data 182 

AMSR2 is on the GCOM-W1 satellite launched by the Japan Aerospace Exploration Agency 183 

(JAXA) in May 2012. As a follow-on instrument to AMSR-E, which was operated from 2002 184 

to 2012, the AMSR2 is a passive microwave sensor that measures the brightness temperature 185 

at seven different frequencies between 6.9 GHz and 89.0 GHz (Imaoka et al., 2010). It is 186 

widely acknowledged that microwaves measured from space are severely contaminated by 187 

radio frequency interference (RFI) effects (Liu et al., 2011; Njoku et al., 2005; Zeng et al., 188 

2015). Therefore, a new 7.3-GHz channel was added to the AMSR2 to identify and address 189 

RFI signals. Additionally, the AMSR2 has a larger antenna (2.0 m) than the AMSR-E (1.6 m) 190 

to provide a higher spatial resolution. The AMSR2 provides geophysical products such as 191 

integrated water vapor, integrated cloud liquid water, precipitation, sea surface temperature, 192 

sea surface wind speed, sea ice concentration, snow depth, and soil moisture content (Imaoka 193 

et al., 2010). For this study, we obtained the AMSR2 L3 SM products, derived from the 194 

JAXA algorithm with 10 km spatial resolution, from the distributor’s website (https://gcom-195 

w1.jaxa.jp/auth.html). Readers are referred to Koike (2013) for a detailed description of the 196 

retrieval algorithm. The AMSR2 sensor provides volumetric SM content from 0 to 60 % with 197 

1–2 day revisit frequency. The daily AMSR2 SM data are extracted by averaging the 198 

ascending (1:30 pm) plus descending (1:30 am) overpasses over a three-year period (2014–199 

2016). 200 
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3. Methodology 201 

3.1 Multivariate Gaussian-Mixture Nonstationary Hidden Markov Model 202 

 203 

In this study, we propose a novel approach to stochastic modeling of soil moisture at multiple 204 

locations that takes into account a set of exogenous variables: rainfall, temperature, and 205 

satellite information. Here, we briefly present only the relevant details of a multivariate 206 

hidden Markov model described elsewhere (Khalil et al., 2010; Kwon et al., 2011, 2009; 207 

Robertson et al., 2004; Yoo et al., 2015) and primarily based on Hughes et al. (1999). Figure 208 

2 shows schematically the procedure of this study.  209 

[Insert Figure 2] 210 

A hidden Markov model (HMM) describes a process in which part of the system dynamics is 211 

hidden, and some other part of the system can be partially explained by other observations. 212 

The HMM uses a Markovian process and a set of stochastic functions to generate plausible 213 

sequences for a given time series based on stochastic sampling from probability distributions 214 

conditioned on different hidden states (Daniel and Martin, 2017; Gharhramani, 2001).  215 

Let 
tSM be an M-dimensional vector of in-situ soil moisture measurements corresponding 216 

to M-stations at time t. Let  TT SMSMSM ,,1:1   denote a sequence of soil moisture with 217 

length T. The sequence of observed soil moisture measurements 
T:1SM  is presumed to be 218 

governed by a Markov property with the corresponding sequence ),...,( 1:1 TT SSS of a finite 219 

number of hidden states, taking on values k in {1, K}. A joint distribution of T:1SM  and 220 

T:1S  can be explicitly defined by taking the two conditional independence (CI) assumptions 221 

(Bishop, 2006; Smyth et al., 1997), as formulated below. 222 

First, assume that the sequence of hidden states T:1S  follows the stationary Markovian 223 

process that relies only on the values of the previous k-th order states. Obviously, the 224 
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probability distribution for the current hidden state with a first-order model ( 1k ) can be 225 

represented as equation (1) (Rabiner, 1989). 226 

)()(),...,( 1

2

11 



 t

T

t

tT SSpSpSSp       (1) 227 

For a stationary HMM, )( 1Sp  is the initial-state probability vector, and the state-transition 228 

probability matrix of a hidden state can be denoted as   KjiSSp ijtt  ,1,)|( 1  .  229 

Second, assume that individual in-situ observations 
tSM  are conditionally independent of 230 

all other variables in the model given the current state tS  (Robertson et al., 2006; Smyth et 231 

al., 1997). 232 

)()(
1

:1:1 t

T

t

tTT Spp 


 SMSSM       (2) 233 

The joint probability of the soil moisture data 
T:1SM and the hidden states can then be 234 

formulated as equation (3) (Kwon et al., 2011, 2009; Robertson et al., 2006). 235 

  















 







)()()(),(
1

1

2

1:1:1 t

T

t

tt

T

t

tTT SpSSpSpp SMSSM    (3) 236 

Soil moisture values, M

tSM , at time t for M stations are assumed to be conditionally 237 

independent of one another given the hidden state tS . Here, spatial dependencies across 238 

multiple stations are indirectly modeled by the hidden state variable, as described in equation 239 

(4). Note that a more advanced approach to modeling the spatial structure of tSM  across M 240 

sites could be of particular interest in situations with high spatial correlation. More 241 

specifically, the spatial coherence across stations is considered by assigning a state to each 242 

day, representing the spatial structure of soil moisture (Kwon et al., 2011, 2009; Robertson et 243 

al., 2006). 244 
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)()(
1

t

M

m

m

ttt SpSp 


 SMSM       (4) 245 

The probability density function for the emission distribution at an individual soil moisture 246 

station 
m

tSM  is assumed to be approximated by a Gaussian mixture function of C 247 

components for non-zero soil moisture , with 0,, cmip  and 1
1 ,,  

C

c cmip  for all 248 

Mm ,...,1  and Ki ,...,1 , as follows: 249 

  ),()( ,,,,1 ,, cmicmi

C

c cmit

m

t NpiSrp  
SM     (5) 250 

Here,   and   are the mean and variance of the Gaussian distribution, respectively, and 251 

the set of parameters associated with the transition matrix, the initial states, and the 252 

parameters of emission distribution are simultaneously estimated from the observed soil 253 

moisture data using the expectation-maximization (EM) algorithm in an optimization context. 254 

Gaussian mixture models are a statistical tool for multimodal density estimation (Bilmes, 255 

1998; Gauvain and Lee, 1994). Gaussian mixture models have been used for soil moisture 256 

modeling (Ryu and Famiglietti, 2005; Verhoest et al., 2015; Vilasa et al., 2017), and have 257 

also been used extensively in hydrologic field (Carreau et al., 2009; Lakshmanan and Kain, 258 

2010; Rings et al., 2012; Yoo et al., 2015). Unlike the HMM, the underlying assumption of 259 

the GM-NHMM is that soil moisture is generated in a stochastic process that sequentially 260 

depends on a set of predictors represented by rainfall, temperature, and the satellite product. 261 

Specifically, NHMMs can be constructed by imposing a non-stationarity assumption on the 262 

probability distribution of the response variables, which in turn depends on observed 263 

independent variables (Hughes et al., 1999; Hughes and Guttorp, 1994; Kwon et al., 2011). 264 

This soil moisture model can be substantially expanded by introducing a mixture model for 265 

soil moisture content into the existing HMM. In this study, we use a mixture of Gaussians to 266 

describe soil moisture at multiple stations in a stochastic framework to account for soil 267 
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moisture variability. Again, we use the EM algorithm to estimate the parameters (Dempster et 268 

al., 1977). 269 

The concept of CI can be illustrated as edges in a directed acyclic graph of the GM-NHMM, 270 

as shown in Figure 3.Suppose ),...,( 1:1 TT XXX   is a set of predictors representing soil 271 

moisture, such as rainfall, temperature, and AMSR2 soil moisture data. In a GM-NHMM, the 272 

state-transition matrix is assumed to be nonstationary, and therefore, the dynamic evolution 273 

of transition probability is a function of multivariate exogenous variables, T:1X . The GM-274 

NHMM is then written as equation (6) (Khalil et al., 2010; Kirshner, 2005; Kwon et al., 2011, 275 

2009). 276 
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[Insert Figure 3] 278 

In this study, we consider uniform priors, thus leading to the maximum likelihood approach 279 

to estimating a set of model parameters, ),(maxarg  XSMP . Again, note that the 280 

proposed model assumes that the observed soil moisture sequences from different years are 281 

conditionally independent. Under the GM-NHMM, the log-likelihood function )(LL  of 282 

the observed soil moisture data at multiple locations can be written as follows (Khalil et al., 283 

2010): 284 

 

  
 

























T
T KS

t

T

t

ttt

T

t

t

TT

SpSSpSp

pLL

],...,1[ 1

1

2

11

:1:1

:1

),(),,(),(ln

),(ln

SMXX

XSM

 (7) 285 

The parameter values cannot be obtained analytically, so we use the EM algorithm to 286 

estimate the value of the parameter vector   by maximizing equation (7). The EM 287 

algorithm is an iterative method for maximizing the likelihood function in a parameter space288 
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 . Finally, the state evolutions over time in equation (6) are simulated by a multinomial 289 

logistic regression as follows (Kirshner, 2005; Kwon et al., 2011):  290 

: 291 

 







K

k k

ttt SSp

1

1

)exp(

)exp(
),(

x

x
xX









    (8) 292 

All the parameters   are real, and  is a vector in a multi-dimensional parameter space. 293 

Here, the prime denotes the transpose of the vector. Parameterization and prediction using 294 

NHMM are well documented in the statistical literature and, thus, need not be elaborated 295 

here. For more detailed description of the NHMM algorithm the reader is referred to Daniel 296 

and Martin, (2017), Gharhramani, (2001), Rabiner, (1989), and Robertson et al., (2003). 297 

 298 

3.2 Ordinary Linear Regression (OLR) 299 

As a comparison to the GM-NHMM, we applied a linear regression model with the same 300 

input variables used in the GM-NHMM to downscale the AMSR2 SM product for each 301 

station m. Here, each parameter (𝛃) is obtained from the least squares method. The linear 302 

combination of predictors for estimating soil moisture can be written as follows: 303 

 304 

     )( 3210 t

m

t

m

t

mmm

t STTpRSM                      (9) 305 

 306 

where SM, R, and 𝑇𝑝 are in-situ SM, rainfall, and temperature data, respectively, and ST is 307 

10km AMSR2 SM data. Again note that predictor variables used here are averaged over the 308 

entire region. 309 

 310 

4. Results and Discussion 311 

4.1 Quantile Mapping for Bias Correction 312 

The mismatch in spatial-temporal resolution between AMSR2 SM products and in-situ 313 

observations causes inevitable systematic biases. Therefore, a statistical bias correction 314 
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approach is commonly applied to remove the systematic bias from the satellite SM data for 315 

subsequent use in either downscaling or SM modeling (Kornelsen and Coulibaly, 2015). We 316 

used a quantile mapping method in which the cumulative density function of the AMSR2 317 

data is matched with that of the in-situ SM observations. In this study, t location-scale (eq. 318 

(10)) and gamma (eq. (11)) distributions were selected to fit the AMSR2 and in-situ soil 319 

moisture data, respectively, based on the Akaike information criterion (AIC) and the 320 

Bayesian information criterion (BIC), respectively, as summarized in Table 2. As shown in 321 

Figure 4, the bias-corrected AMSR2 SM data exhibit enhanced variability and match well 322 

with the in-situ observations. We used these bias-corrected AMSR2 SM products for our 323 

subsequent analyses. 324 
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 327 

where 𝜇, 𝜎, and 𝜈 are the location, scale, and shape parameters of the t location-328 

scale distribution, respectively, and Γ( • ) is the gamma function. 𝜃 and 𝜏 are the 329 

shape and scale parameters of the gamma distribution, respectively.  330 

[Insert Figure 4 and Table 2] 331 

 332 

4.2. Predictor Selection  333 

It is important to identify a suitable set of predictors that consistently influences the response 334 

variables. However, in a regression model, using several predictors can cause serious 335 

overfitting, which results in unrealistic predictions (Khalil et al., 2010). For a parsimonious 336 

model, we consider only three predictors, daily rainfall, air temperature, and AMSR2 data, and 337 
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we initially evaluate the cross-correlations for all lagged orders. The correlations are 338 

statistically significant and strongly persistent, as illustrated in Figure 5. Note that here the 339 

values are averaged over the entire watershed for a representation. The lag-1 correlation is high 340 

for daily rainfall, and the correlations appear to be consistent with the lag in the temperature 341 

and AMSR2 data. Therefore, we retained a set of 1 day time-lagged values for the three 342 

predictors to simulate soil moisture content in the proposed GM-NHMM. 343 

 344 

[Insert Figure 5] 345 

 346 

4.3 Stochastic Modeling of Soil Moisture Using GM-NHMM 347 

The performance of the GM-NHMM is greatly influenced by the number of hidden states 348 

used to represent an unobserved SM state. In this study, we estimated the number of hidden 349 

states by recursively maximizing the log‐likelihood (or minimizing the BIC) in the context of 350 

optimization. The maximized log-likelihoods for each state are shown in Figure 6, together 351 

with the minimized BIC. As shown in Figure 6(a), the log-likelihoods gradually increase with 352 

the number of hidden states, but we could not clearly identify an inflection point on the curve 353 

to determine the optimal number of hidden states. On the other hand, the BIC decreases 354 

rapidly at 4 states, and the degree of reduction beyond 6 hidden states is negligible. 355 

Therefore, we used 6 hidden states to build our stochastic soil moisture model at multiple 356 

locations.  357 

 358 

[Insert Figure 6] 359 

 360 

For the selected 6 hidden states, the most likely temporal sequences can be efficiently 361 

determined using the Viterbi algorithm (Viterbi, 1967), which calculates the probability of 362 

that a hidden state will occur as well as the probability that it will transition to another state at 363 
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a certain date. The estimated temporal sequences of observed SM are illustrated in Figure 7, 364 

and considerable inter-annual and intraseasonal variability are clearly identified. The Viterbi 365 

analysis is a useful tool not only to capture intra- and inter-annual variability but also to 366 

quantify its intensity. More specifically, changes in the intra-annual sequence of observed SM 367 

states are shown along a horizontal line, and inter-annual variability is represented by a 368 

vertical line.  369 

 370 

[Insert Figure 7] 371 

 372 

The degree of soil wetness and the frequencies associated with hidden states are presented in 373 

Figure 8. Figure 8 (a) shows boxplots representing station-averaged SM data corresponding 374 

to each state in 2014–2016. Clearly, the lower states are closely related to drier soil 375 

conditions, and vice versa. Moreover, the median SM value increases largely as a function of 376 

the number of states (i.e., from 21% (state 1) to 29.3 % (state 6)). The percentage of days 377 

falling into the 6 hidden states for SM data across 6 stations are 14.4, 14.8, 19.5, 19.8, 20.3, 378 

and 11.1 %. States 3–5 occur dominantly during the entire period, accounting for 59.6 %, 379 

whereas state 6, representing the wettest soil condition, has the lowest frequency, as shown in 380 

Figure 8(b). The estimated transition probabilities of the NHMM are shown in Table 3. Note 381 

that the state-transition in the GM-NHMM is assumed to be nonstationary and informed by 382 

exogenous variables, such as rainfall and temperature. As expected, the self-transition 383 

probability (more likely to stay in the current state than to transition to a new state) is 384 

noticeably high, with state 1 being the most persistent (0.93) and state 6 being the least 385 

persistent (0.70). 386 

 387 

[Insert Figure 8 and Table 3] 388 



[17] 

 

 389 

The temporal patterns of the simulated SM and the in-situ observations at 6 stations are 390 

illustrated in Figure 9. To verify the potential of the model to reproduce the variability observed 391 

in the SM data, we conducted 100 simulations. The results show a fairly good agreement with 392 

the in-situ observations. Here, the proposed GM-NHMM is illustrated across the entire period 393 

(2014–2016), along with the OLR model, in Figure 10. The GM-NHMM comprises the vector 394 

of observed SM data from 6 stations (as dependent variables) given a vector of observed 395 

covariates (as independent variables). For comparison, we built an OLR model for each station 396 

using the ordinary least square method for the best-fit model of SM data. Summary statistics 397 

for the comparison between the GM-NHMM and OLR are presented in Table 4, and the GM-398 

NHMM outperforms the OLR model. More specifically, the SM data simulated through the 399 

GM-NHMM agree well with the in-situ observations, with correlation coefficients (r) ranging 400 

from 0.73 to 0.81 (mean: 0.78), and a root mean square error (RMSE) ranging from 1.47 % to 401 

2.62 % (mean: 2.06 %), whereas the OLR has much lower performance (mean r: 0.49 and mean 402 

RMSE: 2.58 %).  403 

 404 

[Insert Figure 9-10 and Table 4] 405 

 406 

To further ensure that the proposed modeling scheme can predict SM, we subdivided the SM 407 

data into different groups and then validated the proposed GM-NHMM using a cross-408 

validation scheme. We partitioned a sample of SM data into three different subsets 409 

corresponding to the year of interest, trained the model on one subset, and then validated the 410 

model with the remaining data. In other words, a set of parameters for the GM-NHMM is 411 

estimated in the training period, and the identified parameters are then used to simulate SM 412 

for the validation. We performed 100 simulations for each cross-validation partition for both 413 
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the training and validation periods. As a representative case, the simulated SM values for 6 414 

stations are compared with the values observed at those stations for the training period 415 

(2014–2015) and the testing period (2016) in Figure 11. The SM data are reasonably well 416 

reproduced by the proposed GM-NHMM for both the training and testing phases. The results 417 

of the cross-validation using the GM-NHMM for the different partitions are summarized in 418 

Table 5. We considered three goodness‐ of‐ fit measures, correlation coefficient (r), RMSE, 419 

and bias, in evaluating the models. During the training periods, the 6-station averaged 420 

correlation coefficient values range from 0.72 to 0.80, whereas during the validation period, 421 

the r values show slightly lower correlations than during the training period. However, the 422 

GM-NHMM can clearly generate the intraseasonal sequence of daily SM fairly well, and 423 

other measures also show reasonable performance at multiple locations, leading to higher 424 

correlations with the observed SM data. The RMSE and bias values are also generally better 425 

for the training period than the validation period. 426 

 427 

[Insert Figure 11 and Table 5] 428 

 429 

For a multisite SM simulator, it is of particular importance to correctly reproduce the spatial 430 

coherence of daily SM across multiple stations. Therefore, we estimated the spatial 431 

correlations of the sequence of daily SM and compared them with the observed values. As 432 

shown in Figure 12, the spatial correlations across the stations are reasonably well reproduced 433 

by proposed GM-NHMM model. 434 

 435 

[Insert Figure 12] 436 

 437 
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Table 6 shows the results of applying the GM-NHMM with different combinations of 438 

predictors to examine the contribution of the AMSR2 SM data to the proposed model. The 439 

use of rainfall and temperature without the AMSR2 data (case-1) led to a slightly lower 440 

correlation coefficient of 0.73, compared to the results obtained with all three predictors 441 

shown in Table 5. On the other hand, there was no significant change in the correlation 442 

coefficient of 0.63 when we used rainfall alone as a predictor (case-2). Furthermore, we 443 

found a similar trend in our cross-validation analysis. Therefore, the 1 day time-lagged 444 

rainfall data might be the main factor in properly reproducing SM dynamics. Nonetheless, 445 

combining rainfall with temperature and AMSR2 still yielded the highest correlation with the 446 

in-situ observations.  447 

 [Insert Table 6] 448 

 449 

5. Concluding Remarks 450 

We have here presented a stochastic soil moisture estimation model based on a GM-NHMM 451 

to spatially disaggregate AMSR2 SM data at multiple locations in the context of 452 

downscaling. Given the close relationship with SM, we considered both rainfall and air 453 

temperature as potential predictors in the proposed stochastic downscaling model. We used 1 454 

day time-lagged values for the three predictors to simulate SM in the proposed GM-NHMM 455 

model. Before applying the proposed downscaling scheme, we used the quantile mapping 456 

approach to reduce the systematic bias in the AMSR2 SM products, and we then used those 457 

bias-corrected AMSR2 SM products for subsequent analyses. In GM-NHMM terms, we 458 

formulated a six-state model with three predictors representing an unobserved SM state based 459 

on the BIC. The temporal sequences of unobserved hidden states and the dynamic evolution 460 

of transition probability were estimated by the Viterbi algorithm. Consequently, the proposed 461 

GM-NHMM was applied to simulate fine-resolution SM products in a multivariate 462 
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framework. We compared our results with in-situ observations from the Yongdam dam 463 

watershed in South Korea. The key results obtained are summarized as follows. 464 

1. The estimated small set of hidden states that most likely corresponds to localized soil 465 

moisture dynamics is effectively captured and accounts for a certain fraction of the 466 

soil moisture process, which improves understanding of the intraseasonal and inter-467 

annual variability of SM dynamics. Based on the identified state transition-468 

probability matrix, self-transitions are more significant than the probability of 469 

transitioning to other states, indicating that the states seem to be persistent over time 470 

due to the slow-varying behavior of basin-scale SM (Botter et al., 2007).  471 

2. Given the relatively short length of the in-situ SM time series data, we considered a 472 

cross-validation performance assessment of the simulations. The rainfall predictor 473 

plays a substantial role in achieving overall predictability. Adding temperature and 474 

AMSR2 data as predictors improves the fit to the SM data. Therefore, weather variables 475 

(i.e., rainfall and temperature) could be effective in picking up some of the 476 

predictability of local SM that is not captured by AMSR2 data. On the other hand, 477 

large-scale dynamic features identified in remote-sensed SM data seem to facilitate the 478 

identification of other SM states with well-defined regional spatial patterns. The results 479 

presented here illustrate the potential of a stochastic model with a climate-predictor-480 

based forecast. However, the relatively small improvement in forecast skill that the 481 

AMSR2 SM products offer in the model suggests that the AMSR2 data might not 482 

sufficiently reflect the regional or seasonal characteristics of this study area. 483 

3. We compared the efficiency of the proposed model with that of an ordinary regression 484 

model using the same predictors. The mean correlation coefficient for the GM-NHMM 485 

obtained by averaging over all the stations is about 0.78, which is significantly greater 486 

than that of the OLR, about 0.23. The proposed model also yields a noticeable reduction 487 
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in RMSE. Moreover, the proposed GM-NHMM method not only provides a better 488 

representation of the observed SM than the OLR model but also preserves spatial 489 

coherence across all the stations, which is a fundamentally important property in 490 

describing the spatial pattern of soil moisture and its association with runoff on a 491 

catchment scale. 492 

Our main contributions in this study are our insights into the soil moisture process and its 493 

potential predictability, leading to the way for more applications in hydrologic studies. We 494 

expect that future work will address this study’s shortcomings with respect to the use of 495 

satellite-based products and predictor selection and further investigate cross-validation 496 

assessment of forecasts for different regions over a longer period of record, which are 497 

required to support these applications. 498 

 499 

  500 
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Appendix A 501 

List of Abbreviations 

AIC Akaike information criterion  

AMSR2 Advanced Microwave Scanning Radiometer 2  

ASCAT Advanced Scatterometer  

BIC Bayesian information criterion  

CI Conditional independence 

EM Expectation-maximization 

GM-NHMM Gaussian mixture nonstationary hidden Markov model 

HMM Hidden Markov model  

JAXA Japan Aerospace Exploration Agency  

MODIS Moderate Resolution Imaging Spectroradiometer 

OLR Ordinary regression model  

r Correlation coefficient 

RMSE Root mean square error 

SM Soil moisture 

SMAP Soil Moisture Active Passive  

SMOS Soil Moisture Ocean Salinity Satellite 

 502 

 503 

Appendix B 504 

List of Symbols 

 𝑇𝑝 Temperature 

R Rainfall 

ST AMSR2 SM data 

Γ( • )  Gamma function 

θ Shape parameter of the gamma distribution 

ν Shape parameter of the t location-scale distribution 

τ Scale parameter of the gamma distribution 
M

tSM  M-dimensional vector of in-situ soil moisture measurements at time t. 

T:1S  Finite number of hidden states 

X A set of predictors 

)(LL  Log-likelihood function 

   𝜇 Location parameter of the t location-scale distribution 

  𝜎 Scale parameter of the t location-scale distribution 

 505 

 506 

  507 
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Table 1. 

Specification 

and 

characteristics 

of soil 

observation 

sites in the 

Yongdam dam 

watershed. Site 

Elevation Longitude Latitude Annual rainfall Observation Land Cover 

(m a.s.l) (o) (o) (mm/yr)  depth (cm)   

SM & Rainfall       

Station 1 313 127.55 35.87 1,107 10, 20, 40, 60 Forest  

Station 2 330 127.43 35.97 1,224 10, 20, 40, 60 Forest 

Station 3 396 127.4 35.86 1,191 10, 20, 40, 60 Forest 

Station 4 334 127.49 35.8 1,120 10, 20, 40, 60 Agriculture 

Station 5 453 127.63 35.81 1,049 10, 20, 40, 60 Agriculture 

Station 6 409 127.51 35.68 1,193 10, 20, 40, 60 Forest 

Temperature             

Jangsu 406 127.52 35.66 - - - 
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[32] 

 

Table 2. BIC and AIC scores with respect to distribution models. 728 

In-situ AMSR2 

Distribution BIC AIC Distribution BIC AIC 

Gamma 44,677  44,663  t-location scale 31,445  31,425  

Log-logistic 45,051  45,037  Log-logistic 32,316  32,303  

Normal 45,128  45,114  Gamma 36,550  36,536  

t-location scale 45,137  45,116  Weibull 38,680  38,666  

Weibull 45,259  45,246  Normal 43,660  43,646  

  729 



[33] 

 

Table 3. Transition probability matrix of 6 hidden states for soil moisture at 6 stations in the 730 

Yongdam watershed. 731 

 Site Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 

Station 1 0.93 0.01 0.05 0.00 0.00 0.01 

Station 2 0.02 0.90 0.01 0.04 0.00 0.04 

Station 3 0.04 0.03 0.88 0.00 0.03 0.02 

Station 4 0.00 0.04 0.00 0.92 0.02 0.02 

Station 5 0.00 0.00 0.07 0.05 0.79 0.09 

Station 6 0.00 0.00 0.00 0.00 0.30 0.70 

 732 

  733 



[34] 

 

Table 4. Comparison between in-situ and simulated SM.  734 

Site 
BC AMSR2 GM-NHMM OLR 

r RMSE (%) r RMSE (%) r RMSE (%) 

Station 1 0.34 4.55 0.79 2.62 0.49 3.36 

Station 2 0.10 4.07 0.78 2.02 0.55 2.42 

Station 3 0.31 2.55 0.73 1.52 0.49 1.83 

Station 4 0.38 2.54 0.81 1.47 0.54 1.86 

Station 5 0.17 4.34 0.79 2.22 0.41 2.95 

Station 6 0.10 4.93 0.79 2.50 0.48 3.06 

Average 0.23 3.83 0.78 2.06 0.49 2.58 

 735 

 736 

 737 
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[35] 

 

Table 5. Comparison between in-situ and simulated SM. 740 

741 

Site 

Training 

(2014–2015) 

Validation 

(2016) 

Training 

(2015–2016) 

Validation 

(2014) 

Training 

(2014, 2016) 

Validation 

(2015) 

r 
RMSE 

(%) 
Bias r 

RMSE 

(%) 
Bias r 

RMSE 

(%) 
Bias r 

RMSE 

(%) 
Bias r 

RMSE 

(%) 
Bias r 

RMSE 

(%) 
Bias 

Station 1 0.79  2.69  0.43  0.80  2.47  0.32  0.83  2.14  0.32  0.62  3.34  0.26  0.77  2.79  0.72  0.68  3.14  1.53  

Station 2 0.79  2.10  0.66  0.75  1.85  0.19  0.86  1.65  0.37  0.63  2.57  1.36  0.73  2.25  0.83  0.86  2.26  0.69  

Station 3 0.76  1.49  0.28  0.67  1.57  0.10  0.75  1.45  0.25  0.69  1.65  0.00  0.68  1.70  0.44  0.74  1.80  1.02  

Station 4 0.80  1.57  0.24  0.83  1.24  0.06  0.73  1.44  0.20  0.74  1.86  0.06  0.76  1.57  0.35  0.59  1.91  0.99  

Station 5 0.79  2.37  0.67  0.78  1.89  0.23  0.76  2.18  0.48  0.60  2.63  0.19  0.65  2.54  0.87  0.66  3.47  2.11  

Station 6 0.83  2.23  0.68  0.73  2.96  1.04  0.88  1.88  0.41  0.68  2.43  0.30  0.71  2.80  1.01  0.86  2.60  1.27  

Average 0.79  2.08  0.49  0.76  2.00  0.33  0.80  1.79  0.34  0.66  2.41  0.36  0.72  2.28  0.70  0.73  2.53  1.27  



[36] 

 

Table 6. Comparison of r values with respect to different combinations of predictors. 742 

Sta. No 

Modeling Cross Validation 

Entire period 

(2014–2016) 

Training 

(2014–

2015) 

Validation 

(2016) 

Training 

(2015–

2016) 

Validation 

(2014) 

Training 

(2014, 2016) 

Validation 

(2015) 

 (Case 1) Predictors: Rainfall, Temperature 

Station 1 0.75  0.76  0.72  0.76  0.64  0.71  0.59  

Station 2 0.73  0.74  0.70  0.84  0.60  0.56  0.74  

Station 3 0.63  0.70  0.48  0.69  0.66  0.52  0.65  

Station 4 0.78  0.78  0.79  0.70  0.71  0.81  0.66  

Station 5 0.73  0.75  0.68  0.70  0.54  0.64  0.42  

Station 6 0.75  0.77  0.72  0.87  0.60  0.55  0.66  

Average 0.73  0.75  0.68  0.76  0.63  0.63  0.62  

 (Case 2) Predictor: Rainfall 

Station 1 0.78  0.78  0.79  0.72  0.81  0.80  0.70  

Station 2 0.39  0.45  0.22  0.23  0.51  0.38  0.47  

Station 3 0.62  0.66  0.53  0.57  0.67  0.56  0.62  

Station 4 0.81  0.80  0.84  0.79  0.83  0.84  0.70  

Station 5 0.62  0.61  0.64  0.49  0.75  0.67  0.53  

Station 6 0.57  0.61  0.50  0.49  0.67  0.59  0.63  

Average 0.63  0.65  0.58  0.55  0.71  0.64  0.61  
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 746 

Figure 1. The study site with topography and observation stations. 747 
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 749 

Figure 2. Schematic diagram representing the processing steps.  750 
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 753 

Figure 3. Graphical model representation of nonhomogeneous hidden Markov model. Here, 754 

SM, S, X indicate soil moisture, hidden state and exogenous variable (i.e., rainfall, 755 

temperature, and AMSR2), respectively. 756 
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 760 

Figure 4. Bias-uncorrected and bias-corrected AMSR2 SM time series data with in-situ 761 

observations during the study period, 2014–2016. 762 
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 765 

Figure 5 Sample cross correlation between the in-situ soil moisture and a set of predictors: a) rainfall, b) temperature, and c) AMSR2 soil 766 

moisture data. All values are averaged over the entire watershed. 767 
 768 
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 769 

Figure 6. Log-likelihood and BIC values in terms of hidden states. 770 
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 773 

Figure 7. Estimated hidden state sequence for a 3-year period (2014–2016). 774 
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 776 
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 778 
      (a) SM per state                  (b) Frequency of SM per state 779 

Figure 8. The estimated distribution and frequency of soil moisture in each state.  780 
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 781 

Figure 9. A comparison of time series data between the in-situ and GM-NHMM-simulated 782 

SM data for 2014–2016: the green line indicates the in-situ observations, and the blue line 783 

represents the median of 100 simulations. The shaded area represents the uncertainty bound 784 

of simulations (between 2.5% and 97.5%). 785 
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 787 

Figure 10. A comparison of time series data between the in-situ and OLR-simulated SM 788 

products for 2014–2016: the green line indicates in-situ observations, and the blue line 789 

represents OLR-simulated SM. 790 
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(a) 792 

 793 

(b) 794 

 795 

Figure 11. Comparisons between the sequences of simulated soil moisture and that observed 796 

at multiple locations in the Yongdam watershed for a) the training period (2014–2015) and b) 797 

the validation period (2016).798 
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 799 
Figure 12. Comparison of the spatial correlation matrices between the observations and simulations of daily soil moisture sequences across 6 800 

stations. 801 
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