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Abstract 

Traditional hydrological modelling assumes that the catchment does not change with time. 

However due to changes of climate and catchment conditions this stationarity assumption 

may not be valid in the future. It is a challenge to make the hydrological model adaptive to 

the future climate and catchment conditions. In this study IHACRES, a conceptual rainfall–

runoff model, is applied to a catchment in southwest England. Long observation data (1961-

2008) are used and seasonal calibration (only the summer) has been done since there are 

significant seasonal rainfall patterns. Initially, the calibration is based on changing the model 

parameters with time by adapting the parameters using the step forward and backward 

selection schemes. However, in the validation, both models do not work well. The problem is 

that the regression with time is not reliable since the trend may not be in a monotonic linear 

relationship with time. Therefore, a new scheme is explored. Only one parameter is selected 

for adjustment while the other parameters are set as the fixed and the regression of one 

optimised parameter is made not only against time but climate condition. The result shows 

that this nonstationary model works well both in the calibration and validation periods.  

 

Keywords: climate change, nonstationarity, seasonal effect, model parameters  
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1. Introduction 

The impacts of climate change are of increasing interest to water resources managers (Bates 

et al., 2008; Compagnucci et al., 2001). The uncertainty of the impacts of climate change may 

arise from numerous factors  such as Global Circulation Model (GCM), downscaling method, 

the structure and parameters of hydrological model and emission scenarios (Wilby and Harris, 

2006). Numerous researches argue that GCM structure is the largest source of uncertainty and 

hydrological model parameterisation is almost the last (Arnell, 2011; Chen et al., 2011; Teng 

et al., 2012; Wilby and Harris, 2006).  However, some studies indicate that the rank of 

hydrological modelling may depend on the type of hydrological model used and the study 

catchment (Blöschl et al., 2007; Blöschl and Montanari, 2010; Wilby, 2005) which shows 

that hydrological modelling should not be disregarded as insignificant in climate change 

impact analyses.  

Generally, ensembles of these sources are used to quantify and reduce the uncertainty of the 

impact of climate change. (Boyer et al., 2010; Chiew et al., 2009; Minville et al., 2008; Vaze 

et al., 2010). One assumption of these studies is that the catchment does not change with time 

(i.e., stationary conditions) which means the model calibrated for the historical period is valid 

for the future period. The premise of this assumption is that if the model is calibrated for a 

long time period of observation data then these calibrated parameters can be assumed to be 

still effective for the future climate conditions (Arnell, 1994). However, in reality, due to 

changes of climate and catchment conditions this stationarity assumption may not be valid in 

the future. Therefore, the model should be reliably calibrated under current climate conditions 

in order to estimate the impact of climate change on future hydrological system. However, it 

is a challenge to make the hydrological model adaptive to the future climate and catchment 

conditions that are not observable at the present time. 
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The main sources of uncertainty in the hydrological modelling are model structural errors and 

parameterisation errors. The uncertainty of model structure errors is generally quantified by 

using several different models, and numerous methods are proposed regarding quantification 

of the uncertainty of parameterisation problem. The time varying parameters which arise 

from climate change and catchment change (such as land use/cover change) may be another 

source of uncertainty in climate change impact studies. Recently, there have been some 

studies about the stability of the model performances and the effect of parameter values (Li et 

al., 2014; Patel and Rahman, 2014; Xu, 1999; Yan and Zhang, 2014). The reasons of time 

varying model parameters can be explained by several reasons (Merz et al., 2011). First, the 

hydrological model has structure errors and the calibrated parameters may change for 

different time periods in order to compensate these problems with the model structures 

(Wagener et al., 2003). Secondly, catchment characteristic change (Brown et al., 2005) such 

as land use and climate variations (Merz and Blöschl, 2009) can also lead to the change of 

calibrated parameters. However, the correlation between parameters is complicated and may 

be related with catchment conditions (Wagener, 2007) which make it hard to understand the 

reason of the parameter changes in time (Wagener et al., 2010).  

The purpose of this study is to assess the validity of the assumption of hydrological 

stationarity and to improve the traditional time invariant model parameterisation for 

nonstationary hydrological system. Catchment change such as land use/cover change may be 

a source for the temporal change of the model parameters but it is not taken into account in 

this study due to difficulties in obtaining the data. We only consider the relationships between 

the trend of parameters and climate conditions (assuming that the climate change could be 

used as proxies for catchment changes such as vegetation change). Long observation data 

from 1961 to 2008 are used and seasonal calibration (in this study only the summer period is 

further explored because it is more sensitive to climate and land cover change than the other 
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three seasons) has been done since there are significant seasonal rainfall patterns. The data is 

split into calibration and validation periods with the intention of using the validation period to 

represent the future unobserved situations. The performance of three different models, Static 

model, Nonstationary model and Stationary model, are compared with the calibrated model. 

The calibration has been conducted with the use of Nash-Sutcliffe Efficiency to minimise the 

difference between observed and simulated flow for the summer period and the optimised 

parameters have been tested in the validation period.  

 

2. Study Catchment and data 

2.1 Study region and data set 

The Exe catchment is located in the southwest of England. The catchment area is 1530 km2 

and its average annual rainfall is 1088 mm. Four major tributaries of River Exe are River 

Culm, River Barle, River Clyst and River Creedy, and the river flows into the sea via the Exe 

Estuary on the south coast of England. The main urban areas in the Exe catchment are Exeter, 

Crediton, Tiverton, Cullompton. Figure 1 shows the overview of the Thorverton catchment 

(606km2) used in this study which is one of the Exe subcatchments.  
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Figure 1. Location of the Thorverton catchment 

 

Long daily time series (1961-2008) of the observed precipitation and flow data over the 

Thorverton catchment are provided by the UK Met Office. Daily temperature data has been 

downloaded from the UKCP09 gridded observation data sets. Detailed information about the 

data sets can be found at http://www.metoffice.gov.uk/climatechange/science/monitoring 

/ukcp09. As shown in Figure 2, the hydrologic variables in this catchment have strong 

seasonality, i.e. there are significant seasonal rainfall and flow patterns. In general, summer is 

dry and warm, while winter is cold and wet. In this study only the summer period data is used 

since summer is more sensitive to climate and land cover change than the other three seasons.  

 

Figure 2. The autocorrelation function for rainfall (left) and flow (right) which shows strong 

seasonality. 

 

2.2 Temporal distribution of climate variables and flow 

To analyse the nonstationarity of the hydrological system, temporal distribution of climate 

variables and flow are estimated for the calibration period (1961-1990) by moving-averaging 

every 10-year value, i.e. from 1961-1970 to 1981-1990. As shown in Figure 3, the temporal 

trends of the summer precipitation and runoff are apparently decreasing while the air 

temperature tends to increase. The F-test has been done for the precipitation and temperature 

http://www.metoffice.gov.uk/climatechange/science/monitoring%20/ukcp09
http://www.metoffice.gov.uk/climatechange/science/monitoring%20/ukcp09
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data. The result shows that both of those trends are statistically significant (p value=0.0027 

and 0.0033 respectively). The similarity between the temporal distributions of precipitation 

and flow shows that the flow in this catchment is more influenced by precipitation than 

evapotranspiration. 

 

Figure 3. Temporal distributions of climate variables and flow. Each dot is a ten year moving 

average value for the summer period (i.e. the first and the last dots represent the summer 

mean values of 1961-1970 and 1981-1990 respectively). 

 

3. Methodology 

3.1 Hydrological model 

The model used in this paper is a conceptual rainfall-runoff model IHACRES (Jakeman and 

Hornberger, 1993). This model has been widely applied to a variety of catchments for climate 

impact studies (Jakeman et al., 1993; Kim and Lee, 2014; Letcher et al., 2001; Littlewood, 

1999). The model is composed of a non-linear module and a linear module as shown in 

Figure 4 and model parameters are listed in Table 1. A non-linear module converts rainfall to 

effective rainfall which is calculated from the following equations. 

𝑈𝑘 = [𝐶(∅𝑘 − 𝑙)]𝑝𝑟𝑘         (1) 

where rk is the observed rainfall, 𝐶 is the mass balance, 𝑙 is the soil moisture index threshold 

and 𝑝 is the power on soil moisture respectively. The soil moisture (∅𝑘) is calculated from 

∅𝑘 = 𝑟𝑘 + (1 −
1

𝜏𝑘
)∅𝑘−1       (2) 

where 𝜏𝑘 is the drying rate given by 

𝜏𝑘 = 𝜏𝑤exp[0.062𝑓(𝑡𝑟 − 𝑡𝑘)]      (3) 
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where 𝜏𝑤 is the drying rate at reference temperature, 𝑓 is the temperature modulation, 𝑡𝑟 is 

the reference temperature, and 𝑡𝑘 is the observed temperature. A linear module assumes that 

there is a linear relationship between the effective rainfall and flow. Two components in this 

module, quick flow and slow flow, can be connected in parallel or in series. In this study two 

parallel storages in the linear module is used and the streamflow (𝑥𝑘) at time step k is defined 

by the following equations. 

𝑥𝑘 = 𝑥𝑘
(𝑞)

+ 𝑥𝑘
(𝑠)

        (4) 

𝑥𝑘
(𝑞)

= 𝛽𝑞𝑈𝑘 − 𝛼𝑞𝑥𝑘−1
(𝑞)

       (5) 

𝑥𝑘
(𝑠)

= 𝛽𝑠𝑈𝑘 − 𝛼𝑠𝑥𝑘−1
(𝑠)

      (6) 

where 𝑥𝑘
(𝑞)

 and 𝑥𝑘
(𝑠)

 are quick flow and slow flow respectively and α and β are recession rate 

and peak response respectively. The relative volumes of quick flow and slow flow can be 

calculated from 

𝑉𝑞 = 1 − 𝑉𝑠 =
𝛽𝑞

1+𝛼𝑞
= 1 −

𝛽𝑠

1+𝛼𝑠
      (7) 

 

 

Figure 4. Structure of the IHACRES model 

 

Table 1. Parameters in the IHACRES model 
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Module Parameter Description 

Non-linear 

c Mass balance 

τw Reference drying rate 

f Temperature modulation of drying rate 

Linear 

αq, αs, Quick and slow flow recession rate 

βq, βs Fractions of effective rainfall for peak response 

τs Slow flow recession time constant, τs = -Δ/ln(-αs) 

τq Quick flow recession time constant, τq = -Δ/ln(-αq) 

 

3.2 Parameterisation scheme for nonstationary hydrological system 

To explore modelling of the nonstationary hydrological system we propose two nonstationary 

parameterisation schemes. The idea is that the model parameters are changing with time and 

if we can find some parameter trends against time or some meaningful correlation between 

parameters and weather variables, this Nonstationary model performance might be better in 

the future than the static model assuming that the catchment does not change with time (i.e., 

stationary conditions). The first model is adapting the parameters using the step forward and 

backward selection schemes and the second model is optimising only one parameter while 

the other parameters are set as the fixed which are described in the following sections.  

 

3.2.1 Forward and Backward Stepwise methods 

The calibration has been done every consecutive 10-year period by moving the window 1 

year from 1961 to 1990; hence we get 21 data points, each data representing every 10-year 

(i.e. the first and the last data points represent 1961-1970 and 1981-1990 respectively). Since 

some model parameters show trends over 30 years and some do not, the idea of a new 

calibration method is to constrain the model parameters one by one and calibrate the model 

step by step. We assumed the trend to be linear and the statistically significant level is set at 5% 

for detecting the trend. Here we propose the two new calibration methods, Forward Stepwise 
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Method (FSM) and Backward Stepwise Method (BSM). FSM is to start the calibration by 

setting a parameter as a fixed value, whose p-value is the largest among the other parameters 

that do not show any trend (i.e. with the first 10-year value) and the rest parameters are set 

free during optimisation. We repeat this calibrating process step by step until all the rest 

parameters show trends in time. Next, when we encounter a situation that all the parameters 

show trends in mid process, we choose the parameter which has the lowest p-value and fix 

this linear regression equation followed by calibrating the rest free parameters for 

optimisation. As we have 8 parameters, calibration has been done 7 times by incrementing 

one fixed (either constant or keeping the trend) parameters each step. Then finally we get all 

the parameters optimised, and with each step the parameters are optimised under previously 

constrained parameters.  

The FSM process is as follows.  

1. Calibrate the model in every 10-year window from 1961-1970 to 1981-1990. 

2. Test each parameter if it has a trend over the calibration period. 

3. Among the parameters which do not have trends, choose the parameter that has 

the least trend (i.e. the largest p-value). 

4.  Fix this parameter for all the calibration periods while the other parameters are set 

free and do the optimisation. 

5. Go to step 2 and repeat the processes until all parameters are constrained.  

6. During the process when the parameters which do not show any trends are all 

constrained and only the parameters that have trends are left, then choose the 

parameter that has the strongest trend (i.e. the smallest p-value) and fix that trend 

(i.e. linear regression equation) for the calibration period, then do the calibration.  

7. Repeat the processes until all parameters are constrained.  
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For example, Table 2 represents calibration setting and optimisation results for the FSM for 

the summer period from 1961 to 1990. First, the Parameter l is set as a fixed value for all the 

calibration period in Step1 since l in the calibration stage has the highest p-value among the 

other parameters. The other 7 parameters are set free and optimisation has been done. Next, 

Step 2 to Step 5 have been done in the same way. In Step 5, optimisation result shows that all 

three optimised parameters show significant trends along time, among which f shows the 

lowest p-value. Hence, in Step 6, the trend of f along time is fixed, i.e. f value of each 

calibration period is calculated from a linear regression equation. Then optimisation has been 

done for the rest two parameters (c, βq). Step 7 has been done in the same way. Finally, for 

this Nonstationary model, 5 parameters are set as fixed values and 3 parameters are set to 

have trends along time. This Nonstationary model is compared with the other models 

described in the following sections.  

 

Table 2. Parameter setting for calibration and optimisation results for the FSM for summer 

period from 1961 to 1990 

 
Calibration Setting   Optimisation result 

Constant (fix) Trend (fix) Free   No trend Trend 

Calibration   c, τw, f, αs, αq, βq, l, p   c, τw, βq, l, p  f, αs, αq 

Step 1 l - c, τw, f, αs, αq, βq, p   c, αs, β τw, f, αq, p 

Step 2 l, αs - c, τw, f, αq, βq, p   c, τw, αq, p f, βq 

Step 3 l, αs, αq - c, τw, f, βq, p   c, τw, βq, p  f 

Step 4 l, αs, αq, τw - c, f, βq, p   c, βq, p f 

Step 5 l, αs, αq, τw, p - c, f, βq   - c, f, βq 

Step 6 l, αs, αq, τw, p f c, βq   - c, βq 

Step 7 l, αs, αq, τw, p f, c βq   - βq 

 

The BSM process is the same as FSM except starting to constrain the parameters that show 

the strongest temporal behaviour (i.e. the smallest p-value) instead of the parameter that does 

not show any trend. Table 3 represents the calibration setting and optimisation results for the 
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BSM for the summer period from 1961 to 1990. For this Nonstationary model, 2 parameters 

are set as a fixed value and 6 parameters are set to have trends along time. 

 

Table 3. Parameter settings for the calibration and optimisation result for the BSM for 

summer period from 1961 to 1990 

 

Calibration Setting   Optimisation result 

Constant 

(fix) 
Trend (fix) Free   No trend Trend 

Calibration   c, τw, f, αs, αq, βq, l, p   c, τw, βq, l, p  f, αs, αq 

Step 1 - αs c, τw, f, αq, βq, l, p   c, τw, βq, l f, αq, p 

Step 2 - αs, f c, τw, αq, βq, l, p   c, τw, βq, l, p αq 

Step 3 - αs, f, αq c, τw, βq, l, p   c, τw, βq  l, p 

Step 4 - αs, f, αq, l c, τw, βq, p   c, τw, βq, p - 

Step 5 c αs, f, αq, l τw, βq, p   τw, βq p 

Step 6 c αs, f, αq, l, p τw, βq   βq τw 

Step 7 c αs, f, αq, l, p, τw βq   βq  

 

3.2.2 Adjustment of one parameter against time and climate variables 

An alternative parameterisation scheme for the nonstationary system is to select only one 

parameter for optimisation while the other parameters are set as fixed. In other words, the 

stationarity assumption is valid for all parameters except one. The reason why we adopt this 

method is due to the issue of equifinality in modelling complex environmental system. The 

concept of equifinality is that many different parameters of the model may reproduce the 

observed behaviour of the system which are acceptable (Beven and Freer, 2001). In other 

words, similar model performances can be achieved with different sets of parameters. 

Therefore, in parameterisation of a hydrological model, detecting the change of parameters 

with time may be a difficult problem. This is in part due to the interdependency of parameters. 

Since the parameters may be linked with each other to a certain degree, setting all parameters 

free in optimisation process may lead difficulty in detecting the trend of nonstationay 

parameters. Hence, we constrain all the parameters except one to resolve this issue. The 

success of this model depends on whether the optimised one parameter shows time stability 
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or strong correlation with climate variables, given the rest parameters fixed. This is because, 

in this condition, the model parameter can be stably predicted with changing time and 

changing climate in the future. For the fixed parameter values, the first 10-year period (1961-

1970) calibrated parameters are applied. The one varying parameter is selected which has a 

strong relationship with climate variables or shows a statistically significant linear trend 

along time.  

 

3.3 Evaluation of model performance 

The model performance is judged by comparing every 10-year observed flow and simulated 

flow in terms of the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) which is 

defined as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2𝑁
𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖 −𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )

2𝑁
𝑖=1 

(8) 

where,  𝑄𝑠𝑖𝑚 and 𝑄𝑜𝑏𝑠 are the simulated and observed runoff, respectively. 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is the mean 

of the observed runoff, i is the i-th day, an N is the number of days in the calibration period.  

To evaluate the performance of the Nonstationary model, four different models are compared 

as illustrated in Figure 5. The Calibrated model is the model of which the parameters are 

optimised for each time period hence it shows the best performance for the whole calibration 

period from 1961-1970 to 1999-2008. The Static model is adopted to evaluate whether the 

conventional stationarity assumption is valid for the climate change impact study. This model 

uses parameters calibrated for the first 10-year period (1961-1970) and these parameters are 

applied for the rest periods to see whether the model performance is kept or decreases along 

time. The Nonstationary model is adjusting parameters against time while the Stationary 

model is similar to the Static model except using the first 10-year period parameters of the 

Nonstationary model. Therefore, when we compare the model performance along time, the 
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Calibrated model and the Static model start at the same R2 value, and the Nonstationary 

model and the Stationary model start at the same R2 value. For the Static and Stationary 

models, the calibration period is the first 10-year (1961-1970) and the validation periods are 

from the second 10-year (1962-1971) to the last 10-year (1999-2008) while, for the 

Nonstationary model the calibration periods are from 1961-1970 to 1981-1990 and the 

validation periods are the following periods from 1982-1991 to 1999-2008. The 

Nonstationary models have been validated in two ways. First, the trend of model parameters 

along time is assumed to be linear for the calibration period and this linear equation is 

extrapolated to the validation period. Second, multiple linear regression analysis has been 

done between each model parameter and climate variables. The climate variables used for 

multiple regressions are rainfall (average, maximum, variance and kurtosis), temperature 

(average, maximum, variance and kurtosis), number of wet days, potential evapotranspiration. 

The parameters for the validation periods are calculated from this multiple regression 

equation by inputting the climate variables of each validation period.   
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Figure 5. Illustration of four different models. The shaded areas are the validation period.  

 

4. Results 

4.1 Temporal behaviour of model parameters 

In Figure 6, the model parameters are plotted against the period from 1961 to 1990 to analyse 

the temporal behaviour. Each dot is the optimised parameter for every 10-year period. The 

mass balance c and quick flow recession time constant τq do not show any significant 

temporal trends. However, there are some parameters that show statistically significant 

temporal trend. The reference drying rate τw decreases with time. This is plausible since if the 

reference drying rate decreases, the soil tends to be drier (Eq. (2) and (3)) which is due to the 

increase of temperature (Figure 3). The slow flow recession time constant τs and the relative 

volume of slow flow to total flow vs show an increasing trend and a decreasing trend 
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respectively. These parameters are related to converting effective rainfall to flow which is 

more related to the catchment characteristics than the climate conditions.  

 

Figure 6.  Model parameters calibrated every moving 10-year period from 1961 to 1999. 

(mass balance c, reference drying rate τw, temperature modulation of drying rate f, slow flow 

recession time constant τs, quick flow recession time constant τq, relative volume of slow 

flow to total flow vs) 

 

The temperature modulation of drying rate f shows an interesting temporal behaviour. The 

parameter f controls the sensitivity of drying rate τk to changes in temperature. It decreases 

until the end of 1970’s but from the beginning of 1980’s, on the contrary, it starts to increase. 

We could not find any correlation between this parameter and climate variables (precipitation, 

temperature, potential evapotranspiration, etc). However, as shown in Figure 7, we find a 

positive correlation between f and Palmer Drought Severity Index (Alley, 1984). The PDSI 

for this catchment has been calculated by using the MATLAB tool (Jacobi et al., 2013). The 

zero PDSI means normal state and drought is expressed in negative values, i.e. the smaller the 

value is the more severe the drought it is. A possible interpretation of this trend is that large f 

means that τk is sensitive to temperature change and this large τk results in small 

evapotranspiration, i.e. high PDSI. On the other hand, small f means τk is non-sensitive to 
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temperature change and this small τk results in large evapotranspiration, i.e. low PDSI. 

Therefore, parameters f and PDSI are positively correlated. 

 
Figure 7. Temporal distribution of drying rate f and Palmer Drought Severity Index (PDSI) 

 

4.2 Comparison of the model performance  

To evaluate the Nonstationary model, four different model performances are analysed in 

Figure 8. Understandably, the Calibrated Model shows the best performance for the whole 

calibration period since the parameters are optimised for each time period. The overall trends 

of both the Static and Stationary Model performances are getting worse as time goes by. This 

is a plausible result as the climatic conditions change with time but temporal change in 

calibrated parameters is not considered which brings about error along time. This implies that 

the stationarity assumption is not valid in the future for this catchment in summer. However, 

the Nonstationary models, both FSM and BSM, work well for the calibration period. The 

NSE of the Nonstationary model is little less than the Calibrated model. 
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Figure 8. Model performances (NSE) for every 10-year period from 1961-1970 to 1981-1990. 

Left: Forward stepwise method. Right: Backward stepwise method. 

 

However, in the validation period both the forward and backward multiple parameter 

changing models fail. The validation has been done in two ways, according to how to 

estimate the parameters in the validation period, as mentioned in section 3.3 and here only the 

validated result of FSM is represented in Figure 9 (the performance of BSM for validation 

period is worse than that of FSM). The Nonstationary model performance in the left panel of 

Figure 9 is estimated by extrapolating the parameters trend based on time. On the other hand, 

multiple regression analysis has been done between parameters and climate variables for the 

extrapolation of parameters during the validation period in the right panel of Figure 9. We 

can see that the performance of the FSM Nonstationary model (the red dotted line) is still 

better than that of the Static model (black dashed line), but the difference between the 

Calibrated model (black line) is quite large. 

 

 

Figure 9. Model performances (NSE) for the validation period. Left: the extrapolation of 

parameter trends is based on time. Right: multiple regression analysis has been done between 

parameters and climate variables for the extrapolation of parameters during the validation 

period. 

 

The poor performance of the Nonstationary model in the validation period means that both 

the regression of parameters with time and weather variables is not reliable since the trend of 
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parameters in the calibration period may not be in a monotonic linear relationship. In other 

words, the relationship that expresses the trend of parameter in the calibration period cannot 

capture the relationship between the parameter and time or parameter and climate variables in 

the validation period for this catchment and input data. For example, the temporal distribution 

of the temperature modulation of drying rate f shows quite a linear relationship during the 

calibration period (the data point from 1961 to 1981 in Figure 6), however, the trend tends to 

be opposite afterwards. Another issue is that changing multiple parameters may not make 

every parameter optimised since they are interdependent and may be unnecessarily correlated 

with each other (e.g., their effects could offset each other which result in equifinality). 

 

4.3 Model performance of adjusting one parameter against time and climate variable 

Although, the performances of both the FSM and BSM Nonstationary models are good in the 

calibration period, they are not satisfactory in the validation period. Therefore, we evaluated 

the other Nonstationary model which is calibrated by optimising only one parameter while 

the other parameters are fixed. The catchment drying rate τw has been selected as an adaptive 

parameter due to its time stability and link with temperature as shown in Figure 10. The 

parameter is optimised with the rest parameters fixed. It is apparent that the trend is gradually 

decreasing while the air temperature is increasing over the whole period. 
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Figure 10. Temporal distribution of the catchment drying rate (τw) and average temperature in 

summer. 

 

We cannot assure that the trend of parameter τw in Figure 10 may appear in the far future as 

well. However, it can be justified to extrapolate the trend to the future since the observation 

data is quite long (1961-2008, 47 years) and the trend is stable.  

Figure 11 compares the performances of four different models: Calibrated model, Static 

model and two Nonstationary models. We don’t consider the Stationary model here. The 

result shows that this Nonstationary model works well both in the calibration and validation 

period compared with the Static model. For this Nonstationary model, two different models 

have been made according to how to build a regression equation to calculate the parameter 

for the validation period. The parameter of the first model has been estimated by using linear 

regression analysis along time for the calibration period and this relationship is assumed to be 

valid for the validation period. On the other hand, for the second model, linear regression 

analysis has been done between parameter τw and air temperature. Likewise linear 

extrapolation is applied. In Figure 11, the performance of the first Nonstationary model is 

slightly better than the second one. However, the weakness of estimating the parameter by 

using a monotonic linear relationship with time may not be reliable if the future is too far 

since this may result in unreasonable parameter value. Therefore, the Nonstationary model 

which estimates the future parameter based on the relationship with climate variable might be 

more plausible.   
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Figure 11. Model performances (NSE) for every 10-year period from 1961-1970 to 1999-

2008. 

 

5. Discussion and conclusion 

In this study, the trend of the hydrological model parameters are found and extrapolated in 

order to adapt to the future unobserved situations by functionally relating them with time or 

climate variables. However, the obstacle of this approach is that different parameter sets can 

produce the similar model performance which is known as parameter equifinality and this 

may result in large uncertainty in prediction (Beven, 1993; Minville et al., 2008; Niel et al., 

2003; Wilby, 2005). These diverse sets of possible parameters may lead to different results 

when they are applied to assess the impacts of climate change on flow (Uhlenbrook et al., 

1999) and make it difficult to find the trend of parameters. This may be one likely reason of 

unsatisfactory performance of the stepwise calibrated models in the validation period. 

Another reason can be when the parameters are extrapolated just in time or in functionally 

related climate variables, the estimated parameter set may not be an optimised one since there 

are complex correlations among them. It is not straightforward to understand the temporal 

change of model parameters (Wagener et al., 2010).  Therefore, we propose a calibrating 
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scheme that optimises only one parameter which shows apparent trend and has strong 

correlation with climate variables.  

To further validate the approach of adjusting only one parameter we have added another 

catchment. The East Dart River at Bellever (21.5km2) is used, which is located in the 

southwest of England. Figure 12 compares the performances of four different models which 

are previously mentioned in section 4.3. The performance of the Nonstationary model is 

better than the Static model, which is similar to the Thorverton catchment result. This 

supports the conclusion that the adaptive parameter approach is effective.   

 

Figure 12. Model performances (NSE) for every 10-year period from 1965-1974 to 1999-

2008 for the Bellever catchment. 

 

To make the approach more solid, we tried other parameters as the adaptive one other than 

the drying rate. Only the non-linear module parameters are examined since these are more 

related to the weather variables than the linear module parameters. Among non-linear module 

parameters, f the temperature modulation is excluded because the temporal distribution of this 

parameter does not show any consistent trend. A comparison of the Nonstationary model 

performances among different adaptive parameters is shown along with the Calibrated and 

the Static model in Figure 13. As expected, adjusting the drying rate τw shows the best 

performance and the mass balance C has a good performance as well. On the other hand, 

adjusting the soil moisture index threshold l and the power on soil moisture p are not as good 
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as τw and C but still better than the Static model. Figure 14 shows the result for the Bellever 

catchment. Although the difference between the performances of the adaptive parameters is 

less than those with the Thorverton catchment, adjusting the drying rate τw shows the best 

performance. Since adjusting other parameters also has a good performance (i.e. better than 

the Static model), this adaptive parameter approach can be a useful method in climate change 

studies. 

Figure 13. Comparison of model performances (NSE) among different adaptive parameters 

for the Thorverton catchment. 

 

Figure 14. Comparison of model performances (NSE) among different adaptive parameters 

for the Bellever catchment. 

 

Here are some possible research areas to be explored further. Firstly, although the proposed 

methodology, which is adjusting one parameter against time and weather variable, works well 

for this catchment it does not assure the same result for different catchments and different 

climate conditions. Therefore, further research is needed to explore the proposed scheme in 

different catchments in order to find out whether the trend of model parameters and climate 
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variables show consistent spatial correlations which may add credibility to our proposed 

method. Secondly, in this study, the catchment conditions are not considered. However, the 

parameter trends in time may be related to the changes of catchment characteristics and 

should be explored further. A possible approach to this issue could be based the Normalized 

Difference Vegetation Index which is difficult to get the past data (1960s and 1970s) for this 

catchment. Third, for decision making regarding the impact of climate change on water 

resources, water allocation model should be used to see the difference of various adaptation 

options (e.g., how much larger the reservoir volume should expanded?).   

The main findings of this paper are as follows. The temporal trends of summer precipitation 

and runoff are apparently decreasing while the air temperature tends to increase. Some model 

parameters such as the reference drying rate τw, the slow flow recession time constant τs and 

the relative volume of slow flow to total flow vs show clear trends in time when calibrated 

every 10-year period from 1961-1970 to 1999-2008 for this catchment. We have proposed 

two parameterisation schemes when conceptual hydrological model is used to assess the 

impact of climate change. The first method is to adapt the parameters using the step forward 

and backward selection schemes. However, in the validation period, both the forward and 

backward multiple parameter changing models don’t show much improvement compared 

with the model which uses time invariant parameters (i.e. Static model). One problem is that 

the regression with time is not reliable since the trend may not be in a monotonic linear 

relationship with time. The second issue is that changing multiple parameters makes the 

selection process complex which is time consuming and not effective in the validation period. 

As a result, a new scheme is explored: only one parameter is selected for adjustment while 

the other parameters are fixed and regressions of parameters are made against climate 

conditions and time. It has been found that such a new approach is effective and this 

Nonstationary model works well both in the calibration and validation periods. Although the 
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catchment is specific in southwest England and the data are for only the summer period, the 

methodology proposed in this study is general and applicable to other catchments. We hope 

this study will stimulate the hydrological community to explore a variety of sites so that 

valuable experiences and knowledge could be gained to improve our understanding of such a 

complex modelling issue in climate change impact assessment. 
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Figure 1. Location of the Thorverton catchment 

 

 

 

 

Figure 2. The autocorrelation function for rainfall (left) and flow (right) which shows strong 

seasonality. 
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Figure 3. Temporal distributions of climate variables and flow. Each dot is a ten year moving 

average value for the summer period (i.e. the first and the last dots represent the summer 

mean values of 1961-1970 and 1981-1990 respectively). 

 

 

 

 

Figure 4. Structure of the IHACRES model 
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Figure 5. Illustration of four different models. The shaded areas are the validation period.  

 

 

Figure 6.  Model parameters calibrated every moving 10-year period from 1961 to 1999. 

(mass balance c, reference drying rate τw, temperature modulation of drying rate f, slow flow 
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recession time constant τs, quick flow recession time constant τq, relative volume of slow 

flow to total flow vs) 

 

 
Figure 7. Temporal distribution of drying rate f and Palmer Drought Severity Index (PDSI) 

 

 

 

Figure 8. Model performances (NSE) for every 10-year period from 1961-1970 to 1981-1990. 

Left: Forward stepwise method. Right: Backward stepwise method. 
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Figure 9. Model performances (NSE) for the validation period. Left: the extrapolation of 

parameter trends is based on time. Right: multiple regression analysis has been done between 

parameters and climate variables for the extrapolation of parameters during the validation 

period. 

 

 

Figure 10. Temporal distribution of the catchment drying rate (τw) and average temperature in 

summer. 

 

 

 

 
Figure 11. Model performances (NSE) for every 10-year period from 1961-1970 to 1999-

2008. 
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Figure 12. Model performances (NSE) for every 10-year period from 1965-1974 to 1999-

2008 for the Bellever catchment. 

 

 

 
Figure 13. Comparison of model performances (NSE) among different adaptive parameters 

for the Thorverton catchment. 

 

 

 
Figure 14. Comparison of model performances (NSE) among different adaptive parameters 

for the Bellever catchment. 

 

 


