
                          Kim, D. I., Kwon, H. H., & Han, D. (2019). Bias correction of daily
precipitation over South Korea from the Long-Term Reanalysis using a
Composite Gamma-Pareto Distribution Approach. Hydrology Research,
50(4), 1138-1161. [nh2019127]. https://doi.org/10.2166/nh.2019.127

Peer reviewed version

Link to published version (if available):
10.2166/nh.2019.127

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IWA at https://iwaponline.com/hr/article-abstract/doi/10.2166/nh.2019.127/66753/Bias-correction-of-daily-
precipitation-over-South?redirectedFrom=fulltext. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-
guides/explore-bristol-research/ebr-terms/

https://doi.org/10.2166/nh.2019.127
https://doi.org/10.2166/nh.2019.127
https://research-information.bris.ac.uk/en/publications/bias-correction-of-daily-precipitation-over-south-korea-from-the-longterm-reanalysis-using-a-composite-gammapareto-distribution-approach(24a30e0e-935e-4965-8836-7850619779a7).html
https://research-information.bris.ac.uk/en/publications/bias-correction-of-daily-precipitation-over-south-korea-from-the-longterm-reanalysis-using-a-composite-gammapareto-distribution-approach(24a30e0e-935e-4965-8836-7850619779a7).html


 

 

Bias correction of daily precipitation over South Korea from the Long-Term 1 

Reanalysis using a Composite Gamma-Pareto Distribution Approach  2 

Short Title: Exploring long term reanalysis of daily precipitation over South Korea 3 

 4 

 5 

By 6 

Dong-Ik Kim1, Hyun-Han Kwon2* and Dawei Han1 
7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

1: Water and Environment Research Group, Department of Civil Engineering, University of Bristol, United Kingdom 21 
2: Department of Civil Engineering, Chonbuk National University, South Korea 22 
*: Corresponding Author: Hyun-Han Kwon, hkwon@jbnu.ac.kr  23 

  24 

mailto:hkwon@jbnu.ac.kr


 

2 

 

Abstract   1 

The long-term precipitation data plays an important role in climate impact studies, but the observation 2 

for a given catchment is very limited. To significantly expand our sample size for the extreme rainfall 3 

analysis, we considered ERA-20c, a century-long reanalysis daily precipitation provided by the 4 

European Centre for Medium-Range Weather Forecasts (ECMWF). Preliminary studies have already 5 

indicated that ERA-20c can reproduce the mean reasonably well, but rainfall intensity is 6 

underestimated while wet-day frequency is overestimated. Thus, we first adopted a relatively simple 7 

approach to adjust the frequency of wet-days by imposing an optimal threshold. Moreover, we 8 

introduced a quantile mapping approach based on a composite distribution of a generalized Pareto 9 

distribution for the upper tail (e.g. 95th and 99th percentile), and a gamma distribution for the interior 10 

part of the distribution. The proposed composite distributions provide a significant reduction of the 11 

biases over the conventional method for the extremes. We suggested an interpolation method for the 12 

set of parameters of bias correction approach in ungauged catchments. A comparison of the corrected 13 

precipitation using spatially interpolated parameters shows that the proposed modelling scheme, 14 

particularly with the 99th percentile, can reliably reduce the systematic bias. The findings in this study 15 

suggest that the proposed approach can provide a useful alternative to the bias correction of a regional-16 

scale modelled data with a limited network of rain gauges.  17 

 18 

 19 

Keywords: Composite distribution, ERA-20c, parameter contour map, quantile mapping, reanalysis, 20 

statistical bias correction  21 

 22 
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Introduction 1 

Recent studies have documented that long-term climate change has impacted a wide range of fields 2 

such as agriculture, environment, health, economy and water resources (Vörösmarty et al., 2000; Patz 3 

et al., 2005; Nelson et al., 2009; IPCC, 2014). A long-term change in climate variables such as 4 

precipitation and temperature can affect the growth of crops, ecosystem, human diseases, and water-5 

related hazards. Of these impacts, water related hazards are closely linked to changes in rainfall 6 

intensity, which are of primary concern to water resource managers.   7 

To systematically assess water resources and water related hazards, it is necessary to collect reliable 8 

long-term climate data. Locally recorded data have played an important role, and they have been 9 

considered to be accurate values in the modelling process. However, it has been widely acknowledged 10 

that the observed climate data are coarse in space, and long-term climate data are not readily available 11 

in many countries around the world. A primary strength of the reanalysis data is that compared with 12 

observation, they provide spatially finer scale climate data with a longer period, a few of which can 13 

cover the whole 20th century. For example, the National Oceanic and Atmospheric Administration 14 

(NOAA) has produced the 20th century reanalysis (20cR) spanning from 1850 to 2014, and the 15 

European Centre for Medium-Range Weather Forecasts (ECMWF) has also released century-long 16 

datasets such as the ECMWF 20th century atmospheric model ensemble (ERA-20cm) and ECWMF 17 

20th century assimilation surface observations only (ERA-20c), which cover years from 1900 to 2010 18 

(Compo et al., 2011; Hersbach et al., 2015; Poli et al., 2016). All of them can globally provide daily 19 

or sub-daily scale precipitation data, but differences exist in the assimilation techniques and spatial-20 

temporal resolution. The products from the ECMWF (such as ERA-20c and ERA-20cm), are based on 21 

the Integrated Forecasting System version Cy38r1 with 0.125° spatial resolution, which are more 22 

relevant in regional-scale studies in South Korea due to their higher spatial resolution. The difference 23 

between ERA-20c and ERA-20cm is that the former assimilates pressure and wind observations but 24 

the latter does not consider them in the modelling process (Hersbach et al., 2015; Donat et al., 2016; 25 
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Poli et al., 2016). Therefore, ERA-20cm is limited in reproducing the actual synoptic situation 1 

(Hersbach et al., 2015; Gao et al., 2016). On the other hand, NOAA-20cR was processed by an 2 

Ensemble Kalman Filter technique (Compo et al., 2011), but its spatial resolution (i.e. 1.875°×1.9°) is 3 

much coarser than the other century-long reanalysis data. Under these conditions, this study has 4 

selected the ERA-20c daily precipitation data with 0.125°×0.125° spatial resolution, as an alternative 5 

for the observation in climate impact assessment over South Korea.  6 

However, although substantial improvements have been made in the modeling process, previous 7 

studies have shown that reanalysis datasets still have their own systematic errors which vary in space 8 

and time (Bosilovich et al., 2008; Ma et al., 2009; Bao and Zhang, 2013; Gao et al., 2016; Kim and 9 

Han, 2018). It is also clear that century-long reanalysis data may misrepresent long-term climatic 10 

trends or synoptic scale variability, especially for the first half of twentieth century, and there exists 11 

the difference in temporal variability (Brands et al., 2012; Krueger et al., 2013; Poli et al., 2013; Befort 12 

et al., 2016; Donat et al., 2016). However, there are limited studies on bias correction for long-term 13 

daily reanalysis precipitation data in hydrologic applications. Most of the existing studies have been 14 

performed mainly within the context of comparison across different reanalysis data, but not bias 15 

correction technique issues (Befort et al., 2016; Donat et al., 2016; Poli et al., 2016). Thus, to better 16 

understand the biases and their roles in hydrologic applications, this study focuses on exploring bias 17 

correction methods, especially for extreme value analysis associated with the sampling error in rainfall 18 

frequency analysis, in a certain area with spatio-temporally sparse observation network. 19 

The underlying concepts for the bias correction approach vary from a simple delta change (or mean 20 

bias correction) to a quantile mapping (QM) or multivariate approach based on copula-based technique 21 

(Teutschbein and Seibert, 2012; Haerter et al., 2015; Mao et al., 2015; Vrac and Friederichs, 2015; 22 

Gao et al., 2016; Maraun, 2016; Nyunt et al., 2016; Frank et al., 2018; Macias et al., 2018). For 23 

instance, Frank et al. (2018) applied a scaling approach based on orthogonal distance regressions for 24 

bias correction of a European reanalysis data. Macias et al. (2018) employed a simple bias-correction 25 
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approach using a linear transfer function between the cumulative distribution functions (CDFs) of the 1 

modeled and observed atmospheric variables. Vrac and Friederichs (2015) proposed a multivariate 2 

bias correction scheme based on a copula concept. Although each method has its own merits and 3 

limitations, previous studies have shown that bias correction methods were generally capable of 4 

reducing systematic errors in numerical model outputs and, among them, QM showed better 5 

performance than other approaches, especially for precipitation (Teutschbein and Seibert, 2012; 6 

Themeßl et al., 2012; Fang et al., 2015; Maraun and Widmann, 2018). The QM method, referred to as 7 

‘distribution mapping’ or ‘probability mapping’, was used to rectify the cumulative distribution of the 8 

modelled data against that of the observed data by employing a transfer function. 9 

However, there are two main drawbacks to the QM approach based on a gamma distribution (gQM). 10 

First, it has been acknowledged that gQM often fails to reproduce extreme rainfalls, which are mainly 11 

described by the upper tail of the distribution (Wilks, 1999; Vrac and Naveau, 2007; Hundecha et al., 12 

2009; Volosciuk et al., 2017). In other words, the gQM approach may result in misrepresentation of 13 

the upper tail of the distribution, which, in turn, can lead to underestimation of the design rainfalls. On 14 

the one hand, one may intuitively consider the heavy tailed distributions such as extreme value 15 

distribution (e.g. Gumbel distribution, generalized extreme value distribution and Weibull distribution). 16 

On the other hand, the heavy tailed distribution for the bias correction may result in overestimation of 17 

daily rainfall in the lower tail of the distribution. In these contexts, a composite distribution including 18 

the mixture distribution (such as the Pareto mixture distribution) has been applied to the quantile 19 

mapping approach, especially for the correction of climate change scenarios (Gutjahr and Heinemann, 20 

2013; Smith et al., 2014; Nyunt et al., 2016; Volosciuk et al., 2017). Comparatively little attention has 21 

been given to the bias correction of the century-long reanalysis like ERA-20c. In these contexts, this 22 

study aims to introduce a quantile mapping approach based on a composite distribution of a generalized 23 

Pareto distribution (GPD) for the upper tail (e.g. 95th and 99th percentile) and a gamma distribution 24 

for the interior part of the distribution. 25 
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The conventional QM method is also limited in that it cannot be applied directly to the ungauged 1 

basin, where a one-to-one mapping between the observed and the modelled data does not exist. More 2 

specifically, only a transfer function of a set of grid points for the paired precipitation data can be 3 

obtained. Thus, an alternative method for the synthesis of unpaired data needs to be established. The 4 

general approaches to the interpolation of in-situ data for the quantile mapping are the inverse distance 5 

weighting (IDW) and the kriging method, and the interpolated values can then be used to obtain the 6 

transfer function for the ungauged basin. For example, Gutjahr and Heinemann (2013) applied the 7 

IDW method to produce spatially continuous estimates of the daily precipitation for the spatial bias 8 

correction. However, the systematic error in the process of the spatial interpolation of daily rainfall 9 

can be propagated through to the parameter estimation in the quantile mapping approach. Thus, a 10 

primary question in the statistical bias correction analysis is whether the QM method can reliably 11 

improve ERA-20c daily precipitation, especially for extreme value, over 100 years when including the 12 

ungauged sites.  13 

From this background, this study mainly focuses on exploring the following questions:  14 

(1) What are the characteristics of the uncertainty associated with the ERA-20c daily precipitation 15 

data in South Korea? Do the reanalysis data well describe the statistical properties in terms of the 16 

extreme as well as the mean values?  17 

(2) How well does the traditional QM method approach perform on the reanalysis data? Can a 18 

combined distribution based bias correction be more effective for the reduction of the systematic 19 

error compared with the bias correction approach based on a single distribution (gQM)?  20 

(3) How can we effectively extend the combined distribution approach to the spatial bias correction 21 

for ungauged catchments? Can the proposed scheme facilitate a reconstruction of long-term 22 

precipitation, especially for the estimation of annual maximum series (AMS) of daily precipitation? 23 

To address these questions, we investigated the bias correction in three phases. First, we attempted 24 

to understand the statistical behavior of the ERA-20c data and further analyze the biases and errors in 25 
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the reanalysis mean and extreme precipitation. Second, the QM approach was explored by using a 1 

combined Gamma-Pareto distribution in the bias correction method to better represent the upper tail 2 

of the distribution for 48 stations for the baseline period 1973-2010. The corrected data for the 3 

proposed approach were then compared with that of the observed. Finally, we proposed a spatial bias 4 

correction approach based on the parameter contour maps (IM-PCM). The correction approach 5 

consists of three steps for ungauged catchments. The reanalysis data and observed precipitation are 6 

summarized in the next section, and the theoretical background for the proposed bias correction 7 

approach follows. The proposed model was applied to the daily rainfall data for the baseline period 8 

and a retrospective analysis of the data was then conducted for the estimation of AMS rainfalls in the 9 

Results and Discussion section. Finally, concluding remarks are provided in the last section. 10 

   11 

Study area and data  12 

 Study area and local gauged data 13 

South Korea is located in the northeast part of Asia, and lies between latitudes 33°-39°N and 14 

longitudes 125°-132°E, including all the islands. The total area is approximately 100,032 km2, and its 15 

annual average rainfall is about 1,277 mm. In South Korea, there are hundreds of local weather stations 16 

available. However, most of them have been installed after 1970, and only a few stations provide long-17 

term daily precipitation records for more than 40 years. The observed daily precipitation sequences 18 

were obtained and compiled from the Korea Meteorological Administration (KMA). The location of 19 

the study area and the local gauging stations used in this study are illustrated in Figure 1, and the details 20 

for the stations are summarized in Table 1.  21 
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 1 

Figure 1. A map showing the study area, local gauging stations and grid points of ERA-20c. The 2 

grey shading on the map indicates elevations. 3 

 4 

Table 1. The local rainfall stations used in this study. 5 

Station No. Name Latitude (°N) Longitude (°E) Elevation(m. asl) 
Annual 

rainfall(mm)* 

St. 1 Sokcho 38.2508 128.5644 19.5 1,374.6 

St. 2 Daegwallyeong 37.6769 128.7181 774.0 1,736.4 

St. 3 Chuncheon 37.9025 127.7356 79.1 1,304.9 

St. 4 Gangneung 37.7514 128.8908 27.4 1,436.6 

St. 5 Seoul 37.5714 126.9656 11.1 1,386.8 

St. 6 Incheon 37.4775 126.6247 69.6 1,183.0 

St. 7 Wonju 37.3375 127.9464 150.0 1,318.6 

St. 8 Suwon 37.2700 126.9875 38.3 1,274.9 

St. 9 Chungju 36.9700 127.9525 116.5 1,202.0 

St. 10 Seosan 36.7736 126.4958 30.3 1,254.9 

St. 11 Cheongju 36.6361 127.4428 58.6 1,229.7 

St. 12 Daejeon 36.3689 127.3742 70.3 1,353.0 

St. 13 Chupungyeong 36.2197 127.9944 246.1 1,171.5 

St. 14 Andong 36.5728 128.7072 141.5 1,017.3 

St. 15 Pohang 36.0325 129.3794 3.7 1,145.4 

St. 16 Gunsan 36.0019 126.7631 24.6 1,210.8 

St. 17 Daegu 35.8850 128.6189 65.5 1,047.0 

St. 18 Jeonju 35.8214 127.1547 54.8 1,291.6 
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St. 19 Ulsan 35.5600 129.3200 36.0 1,265.5 

St. 20 Gwangju 35.1728 126.8914 73.8 1,387.9 

St. 21 Busan 35.1044 129.0319 71.0 1,500.2 

St. 22 Mokpo 34.8167 126.3811 39.4 1,139.4 

St. 23 Yeosu 34.7392 127.7406 66.0 1,420.1 

St. 24 Jinju 35.1636 128.0400 31.6 1,504.8 

St. 25 Yangpyeong 37.4886 127.4944 49.4 1,359.6 

St. 26 Icheon 37.2639 127.4842 79.4 1,330.9 

St. 27 Inje 38.0600 128.1669 201.6 1,167.8 

St. 28 Hongcheon 37.6833 127.8803 142.3 1,353.2 

St. 29 Jecheon 37.1592 128.1942 265.0 1,345.8 

St. 30 Boeun 36.4875 127.7339 176.4 1,275.0 

St. 31 Cheonan 36.7794 127.1211 24.0 1,229.4 

St. 32 Boryeong 36.3269 126.5572 16.9 1,219.6 

St. 33 Buyeo 36.2722 126.9206 12.7 1,323.3 

St. 34 Geumsan 36.1056 127.4817 171.7 1,277.1 

St. 35 Buan 35.7294 126.7164 13.4 1,249.8 

St. 36 Imsil 35.6122 127.2853 249.3 1,340.2 

St. 37 Jeongeup 35.5631 126.8658 46.0 1,317.1 

St. 38 Namwon 35.4053 127.3328 91.7 1,351.0 

St. 39 Jangheung 34.6886 126.9194 46.4 1,493.7 

St. 40 Haenam 34.5533 126.5689 14.4 1,322.4 

St. 41 Goheung 34.6181 127.2756 54.5 1,459.2 

St. 42 Yeongju 36.8717 128.5167 212.2 1,268.1 

St. 43 Mungyeong 36.6272 128.1486 172.0 1,241.5 

St. 44 Uiseong 36.3558 128.6883 83.2 1,016.5 

St. 45 Gumi 36.1306 128.3206 50.3 1,051.1 

St. 46 Yeongcheon 35.9772 128.9514 95.0 1,039.3 

      

St. 47 Geochang 35.6711 127.9108 222.4 1,298.9 

St. 48 Sancheong 35.4128 127.8789 0.8 1,512.7 

 * Annual mean precipitation estimated from 1973 to 2010 1 
 2 

 3 

 ERA-20c daily precipitation 4 

As previously mentioned in the Introduction section, we explored the ERA-20c daily precipitation, 5 

which is one of the longest reanalysis data covering the whole 20th century (i.e. 1900-2010) (Donat et 6 

al., 2016; Poli et al., 2016). ERA-Interim data has been widely adopted in the field of 7 

hydrometeorology among many others (Simmons et al., 2014; de Leeuw et al., 2015; Betts and Beljaars, 8 

2017), but the ERA-Interim only covers the data-rich period from 1979 to the present (Dee et al., 2011).  9 

In this research, we focused on the ERA-20c data with its highest resolution, 0.125°×0.125° 10 

(approximately 13.8 km×11.2 km), which consists of 603 grid points (http://apps.ecmwf.int/datasets/). 11 

The data taken over the sea were excluded from this study. The specific gridded points for ERA-20c 12 

are illustrated in Figure 1.  13 
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It is crucial to understand the features of the model biases to improve the modelled reanalysis data. 1 

Some of the general features of ERA-20c daily precipitation over South Korea are examined in terms 2 

of the mean and the extreme values. For the mean precipitation, we compared the intra-seasonal 3 

variability within the annual cycle by exploring the monthly means and the 10-day running means 4 

between the observed and ERA-20c precipitation (as shown in Figure 2) averaged over all 48 stations 5 

during the baseline period (1973-2010). The model performance was evaluated by both the Nash-6 

Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), which are described in the 7 

Methodology section. The results confirmed that ERA-20c can reproduce the mean values quite well 8 

during the dry season. There is a significant difference between modelled and observed precipitation 9 

during the summer (i.e. July to September), which may lead to an underestimation of extreme rainfall. 10 

 11 

(a) 12 

 13 

(b) 14 

 15 

Figure 2. A comparison of the mean values of ERA-20c daily precipitation on the annual basis. (a) 16 

Monthly mean comparison between the observed (Obs) and ERA-20c, and (b) observed 38-year 17 



 

11 

 

(1973-2010) mean of daily precipitation (yellow bar) and its 10-day running mean (black solid line) 1 

along with 10-day running mean estimated from ERA-20c (blue dotted line) for all 48 stations 2 

 3 

In terms of the extreme rainfall episodes, the 50 top events were extracted for the baseline period, 4 

and an underestimation of extremes in the ERA-20c was clearly identified, as illustrated in Figure 3. 5 

The deviations are generally large, even for relatively larger upper tail parts of the distribution with -6 

1.088 for NSE and 76.69 mm for RMSE (Figure 3(a)). On the one hand, the deviations are quite 7 

systematic in the sense of the bias correction. The relationships between the 50 top extreme rainfalls 8 

showed that the discrepancies were largely attributed to differences in rainfall during summer season, 9 

as noted in Figure 2. The overall relationships are similar to each other, as shown in Appendix A, and 10 

the comparisons in the stations 4, 16, 28 and 40 are representatively illustrated in Figure 3(b). The 11 

biases in extreme values are generally proportional to the amount of rainfall, and the biases are likely 12 

to be higher in the upper tails of the distribution than that of the middle layer. 13 

 14 

(a) 15 

 16 

(b)  17 
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 1 

Figure 3. Evaluation of bias associated with 50 top extreme rainfall events. (a) Scatter plot of the 2 

extremes between the observed and ERA-20c over the entire region of interest and (b) comparison of 3 

the deviation corresponding to the rank for the station 4, 16, 28 and 40 for the baseline period 1973-4 

2010. 5 

 6 

In summary, the ERA-20c precipitation data are capable of reliably reproducing the mean values 7 

with 0.968 for NSE and 15.59mm for RMSE, while the extreme values in the 50 top records are 8 

consistently underestimated with -1.088 for NSE and 76.69mm for RMSE. The results obtained here 9 

could indicate that although the ERA-20c modelling process adequately represents the mean climate 10 

of the historical period, heavy rainfalls in the summer season can be significantly underestimated due 11 

to fact that intensive rainfall events driven by convective storms may not be effectively resolved by 12 

the current climate modelling approach and spatial resolution. On the other hand, as shown in Figure 13 

4, ERA-20c exhibits a much higher frequency of wet-days (>0mm/day), varying from 11.75 to 26.64 14 

days per month, than that of observation (6.07 to 14.5 days) for all months in South Korea. More 15 

generally, the over-pronounced frequency of light precipitation by climate models is a well-known 16 

problem, and it may partially cause the underestimation of the extremes. In these contexts, a two-stage 17 

bias correction approach to daily precipitation is typically adopted to first adjust the overestimated 18 

wet-day frequency and then rectify the biases associated with both the mean and extreme values. 19 
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 1 

 2 

Figure 4. Monthly wet-day frequency for the observed (black solid line) and ERA-20c (blue dotted 3 

line) for all 48 stations for the baseline period (1973-2010). 4 

 5 

 6 

Methodology  7 

As illustrated in the previous section, two deficiencies in the ERA-20c became evident: the 8 

overestimation of the wet-day frequency and underestimation of the extreme values. To correct the 9 

biases, we adopted a two-stage bias correction scheme that consists of the wet-day frequency 10 

correction scheme and the composite distribution based QM approach. The proposed methods and 11 

their assumptions used in this study are provided in this section.  12 

  13 

 Wet-day frequency correction scheme  14 

It is well known that the wet-day frequencies of the simulated precipitation data from climate models 15 

are typically inflated due to the generation of small precipitation amounts near 0.1 mm/day (Piani et 16 

al., 2010; Kim et al., 2015b; Nyunt et al., 2016). For this reason, a cut-off threshold (TH) approach 17 

has been commonly applied to adjust the wet-day frequency in the bias correction for daily 18 

precipitation using different criteria (Schmidli et al., 2006; Piani et al., 2010; Themeßl et al., 2012; 19 

Kim et al., 2015a, 2015b; Rabiei and Haberlandt, 2015; Nyunt et al., 2016; Volosciuk et al., 2017). 20 

For example, Piani et al.(2010) and Volosciuk et al. (2017) applied 0.1 mm/day as the threshold, 21 
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whereas the wet-day frequency of simulated precipitation was set equal to that of the observed (Kim 1 

et al., 2015a, 2015b; Nyunt et al., 2016). Rabiei and Haberlandt (2015) compared five different 2 

thresholds (0 mm/hr, 0.02 mm/h, 0.05 mm/h, 0.07 mm/h, 0.1 mm/h) for spatial bias correction of 3 

hourly radar data and concluded that the threshold 0.05 mm/h performed the best among the five in 4 

terms of the reduction of biases.  5 

In our study, a set of predetermined thresholds were used to adjust the wet-day frequency of the 6 

modelled daily precipitation from ERA-20c, and thresholds used in this study can be found in the 7 

previous studies ( Piani et al., 2010; Kim et al., 2015a, 2015b; Rabiei and Haberlandt, 2015; Volosciuk 8 

et al., 2017). We considered four different thresholds to identify an optimal threshold (TH) for the 9 

ERA-20c: (TH1) 0>mm/day, (TH2) 0.1>mm/day, (TH3) 1>mm/day, and (TH4), the frequency of wet 10 

days was set to the observed value, which varied from 0 to 4.66, as shown in Figure 5. On the one 11 

hand, changes in the wet-day frequency can affect the overall performance in the bias correction 12 

process through the QM approach, because a transfer function between the simulated and observed 13 

precipitation is established on the basis of non-zero precipitation. In this context, the optimum 14 

threshold was evaluated through the experiment with gQM for a pair of daily rainfall series for each 15 

station. It should be noted that daily rainfalls below the thresholds were set to zero for ERA-20c. 16 

Among four thresholds, the determined threshold was then applied in the next steps.  17 

 18 

 Figure 5. Monthly distribution of cut-off thresholds for TH4 over all stations. 19 

 20 
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 1 

 Statistical Bias Correction Model: QM with a composite distribution  2 

As stated in the Introduction section, a gamma distribution with two parameters has been commonly 3 

used in bias correction of daily precipitation. The gamma distribution and its transfer function for the 4 

QM can be expressed as follows: 5 

  𝐹(𝑥|𝛼, 𝛽) =
1

𝛽𝛼Γ(α) 
∫ 𝑡𝛼−1𝑒−𝑡/𝛽𝑑𝑡
𝑥

0

;   𝑥 ≥ 0;  𝛼, 𝛽 > 0 (1) 

 𝑥𝑐𝑜𝑟 = 𝐹−1[𝐹(𝑥𝑚𝑜𝑑; 𝛼𝑚𝑜𝑑 , 𝛽𝑚𝑜𝑑); 𝛼𝑜𝑏𝑠, 𝛽𝑜𝑏𝑠] (2) 

where, 𝑥𝑐𝑜𝑟 and 𝑥𝑚𝑜𝑑 are the corrected data and the uncorrected (or modelled) data in the baseline 6 

period. F is a gamma CDF and 𝐹−1 is its inverse function, while 𝛼 and 𝛽 are the shape and scale 7 

parameters of the gamma distribution, respectively. To account for the seasonality, it is common to 8 

have bias correction models for each month that are independent from the others (Kim et al., 2015b). 9 

To effectively improve the bias in the extreme rainfall for ERA-20c, we propose a composite 10 

distribution based on the QM approach which is comprised of different types of distributions. More 11 

specifically, the extreme value distribution can be utilized for the upper tail of the distribution, while 12 

a gamma distribution is applied for the interior part of the distribution. For extremes, the 95th or 99th 13 

percentiles have been applied as an upper threshold in numerous studies because the distribution of 14 

excesses over the high thresholds is asymptotically approximated by a generalized Pareto distribution 15 

(GPD) (Manton et al., 2001; Wilson and Toumi, 2005; Acero et al., 2011; Gutjahr and Heinemann, 16 

2013; Chan et al., 2015; Nyunt et al., 2016). In this study, we apply both the 95th and 99th percentiles 17 

as the upper thresholds.  18 

The GPD has been widely applied to the peak-over-threshold (POT) series for the selection of the 19 

best-fit distribution for the extreme rainfalls (Vrac and Naveau, 2007; Hundecha et al., 2009; Gutjahr 20 

and Heinemann, 2013; Nyunt et al., 2016; Volosciuk et al., 2017), although there have been a 21 

considerable number of studies using other extreme value distributions including: the generalized 22 

extreme value (GEV), Weibull (WEI), Gumbel (GUM), and Log-normal (LOGN). To ensure the 23 
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suitability of the GPD, we first evaluated six different distributions, GPD, GEV, GUM, WEI, LOGN 1 

and gamma, for the extremes in both the observed and ERA-20c over the 95th and 99th percentiles 2 

using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The model 3 

with the lowest AIC and BIC is preferred, as the best-fit distribution. For a given threshold, the GPD 4 

was selected as the best-fit distribution for the extremes as shown in Table 2. The numbers in Table 2 5 

indicate the number of stations which belong to a certain distribution. 6 

 7 

Table 2. The selected distributions among six distributions based on AIC and BIC values for the 8 

extremes from observed and ERA-20c daily precipitation over the 95th and 99th percentiles for all 9 

48 stations.  10 

Percentile Data GPD GEV LOGN WBL GUM GAM 

95th 
Observation 47 1 0 0 0 0 

ERA-20c 48 0 0 0 0 0 

99th 
Observation 47 1 0 0 0 0 

ERA-20c 47 1 0 0 0 0 

 11 

 12 

As previously mentioned, the GPD is separately applied to the extreme values defined by the 95th 13 

and 99th thresholds at each station as a transfer function, whereas the gamma distribution was mainly 14 

applied to the interior part of the distribution, as illustrated in Equation (3) (Gutjahr and Heinemann, 15 

2013). 16 

 
𝑥𝑐𝑜𝑟 = {

𝐹𝑜𝑏𝑠,𝑔𝑎𝑚𝑚𝑎
−1 (𝐹𝑚𝑜𝑑,𝑔𝑎𝑚𝑚𝑎),    if 𝑥 ≤ 95 th or 99 th percentile 

𝐹𝑜𝑏𝑠,𝐺𝑃𝐷
−1 (𝐹𝑚𝑜𝑑,𝐺𝑃𝐷),              if 𝑥 > 95 th or 99 th percentile

 (3) 

Here, 𝐹𝑚𝑜𝑑,𝑔𝑎𝑚𝑚𝑎  and 𝐹𝑚𝑜𝑑,𝐺𝑃𝐷  are the CDFs of the ERA-20c model for gamma and GPD. 17 

Similarly, 𝐹𝑜𝑏𝑠,𝑔𝑎𝑚𝑚𝑎
−1  and 𝐹𝑜𝑏𝑠,𝐺𝑃𝐷

−1  are the inverse (or quantile) function of CDFs of observations 18 

for gamma and GPD, respectively. The heavy tailed distribution for POTs is defined as follows for a 19 

GPD with a high upper threshold (u) (Coles, 2001; Gutjahr and Heinemann, 2013): 20 
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𝐹(𝑥) =  𝑃𝑟(𝑋 − 𝑢 ≤ 𝑥 |𝑋 > 𝑢 ) =  

{
 
 

 
 
1 − (1 + 

𝜉𝑥

𝜃
)
−
1
𝜉
    𝑓𝑜𝑟  ξ ≠ 0 

1 − exp (−
𝑥

𝜃
)        𝑓𝑜𝑟  ξ = 0

 (4) 

Here, 𝜃 = 𝜎 + 𝜉(𝑢 − 𝜇) is the reparametrized scale parameter, and 𝜉 is the shape parameter. In 1 

this study, the thresholds (u, the 95th or 99th percentile) for observed and modelled precipitation were 2 

derived at each station.  3 

In this approach, the four parameters to be estimated are the shape (𝛼) and scale (𝛽) parameters for 4 

the gamma distribution, and the shape (𝜉) and scale (𝜃) parameter for GPD, while the upper thresholds 5 

are assumed to be known for the given 95th or 99th percentile. The parameters for gamma distribution 6 

are estimated on a monthly basis, whereas the parameters of GPD are estimated using entire POTs for 7 

all months in each station. Here, the maximum likelihood method is used to estimate all the parameters. 8 

Hereafter, the proposed method with a composite distribution of gamma and GPD is referred to as 9 

gpQM. Moreover, the gpQM with the 95th and 99th upper thresholds were abbreviated as gpQM95 10 

and gpQM99, respectively. For comparison, the conventional bias correction gQM was also applied 11 

and compared in terms of the accuracy of both the extreme and the mean value.  12 

 13 

 Spatial interpolation by parameter contour maps 14 

In the gpQM approach, a pair of observed and modelled data are required to estimate the six 15 

parameters (TH, 𝛼, 𝛽, 𝜃, 𝜉 and u). However, because there is a limited number of available weather 16 

stations, the transfer function for the QM could not be established for all grid points. Therefore, the 17 

existing methods can only be applied over gauged catchments. In contrast, we introduce an 18 

interpolation method based on parameter contour maps (IM-PCM) which consist of three steps as 19 

summarized in Figure 6. For gpQM95 and gpQM99, the six parameters (TH, 𝛼, 𝛽, 𝜃, 𝜉 and u) were 20 

first estimated for each station as already noted in the previous sections. Secondly, a contour map for 21 

each parameter was then constructed using a 2-dimensional linear interpolation technique as shown in 22 
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Figure 7. Finally, a set of parameters for the gpQM were taken from the maps to construct the transfer 1 

function for all grid points. The cut-off threshold (TH) is the first interpolated variable, and the maps 2 

of shape (𝛼) and scale (𝛽) parameters for the gamma distribution were then generated on a monthly 3 

basis, while the shape (𝜃), scale (𝜉) and upper threshold (u) parameter maps of the GPD were created 4 

by using the entire POTs on an annual basis. For the gQM, a similar process to the one described above 5 

was used to produce three parameter (TH, 𝛼 and 𝛽) maps for the transfer function.  6 

 7 

Figure 6. A flowchart of the proposed quantile mapping approaches (gpQM95/gpQM99 and gQM) 8 

based on the parameter contour maps (IM-PCM).  9 

  10 
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(a) 1 

 2 

(b) 3 

 4 

(c)                         (d) 5 

  6 

Figure 7. Parameter contour maps for gpQM99 approach. (a) Maps of shape (𝛼) and scale (𝛽) 7 

parameter of the gamma distribution in August, (b) maps of shape (𝜉) and scale (𝜃) parameter of the 8 

GPD, (c) map of frequency of wet-days corresponding to the cut-off threshold (TH) in August, and 9 

(d) maps of upper threshold (u) for the GPD. Here, the GPD is applied to entire POTs on an annual 10 

basis. 11 
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 1 

 Evaluation criteria 2 

In this study, we evaluate the bias-corrected ERA-20c in terms of both the extreme and the mean 3 

values. For the extremes, we compared the rainfalls for a given 99th threshold between three different 4 

QM approaches including gQM, gpQM95 and gpQM99. In addition, the annual maximum series 5 

(AMS) for all stations were extracted and compared to that of the corrected ERA-20c. For the mean 6 

values, both the monthly mean and 10-day running means between the observed and ERA-20c 7 

precipitation were compared in the context of the intra-seasonal variability. Moreover, we used the 8 

root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE), which are well known 9 

goodness-of-fit measures for model evaluation in the field of hydrology (Legates and McCabe Jr., 10 

1999). These are provided in Equations 5 and 6: 11 

 12 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑌𝑖

𝑜b𝑠 − 𝑌𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

𝑛
 (5) 

 13 

 𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

] (6) 

Here, 𝑌𝑖
𝑜𝑏𝑠  is the i-th observation, 𝑌𝑖

𝑚𝑒𝑎𝑛  is the mean of the observation, while 𝑌𝑖
𝑠𝑖𝑚  is the 14 

modelled data, and 𝑛 is the number of observations. The RMSE represents the square root of the 15 

second sample moment of the residuals (or deviations) between observed and modelled values (Liu et 16 

al., 2014; Mohanty et al., 2015). A value of zero indicates a perfect fit, and compared with the mean 17 

absolute error (MAE), the RMSE is beneficial and more appropriate to represent model performance 18 

when the error distribution follows Gaussian (Chai and Draxler, 2014). For NSE, essentially, the better 19 

the model efficiency is close to 1, and a model over 0.5 for NSE considered to be of sufficient quality 20 

(Wȩglarczyk, 1998; Gupta et al., 2009; Mohanty et al., 2015). 21 
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The performance of the proposed interpolation method was evaluated by a leave-one-out procedure 1 

within a cross validation framework. To be more specific, this approach estimates a set of parameters 2 

for the observation of daily precipitation for 47 stations out of 48 stations, and the estimated parameters 3 

were further used to build contour maps as shown in Figure 7. The set of parameters of the grid point 4 

corresponding to the excluded station were taken from the maps, and the proposed bias correction 5 

approaches were then applied. Again, note that the model performance for the extreme and mean values 6 

were evaluated with regard to RMSE and NSE as described above. 7 

 8 

 9 

Results and Discussion 10 

 Evaluation for the lower threshold  11 

This study examined four different thresholds (TH1, TH2, TH3, and TH4) for adjustment of the wet-12 

day frequency of ERA-20c daily precipitation through an experiment with the gQM approach in terms 13 

of both the mean and extreme values. We investigated the intra-seasonal variability within the annual 14 

cycle by comparing the monthly means and the 10-day running means as an overall evaluation of the 15 

bias corrected precipitation. Here, all the values were averaged over all 48 stations during the baseline 16 

period (1973-2010) as illustrated in Figure 8. We found that the threshold TH4 yielded the best results 17 

among the four in terms of the reduction of biases, as summarized in Figure 8(a) and Table 3. Again 18 

note that TH4 is the case where the frequency of wet days of ERA-20c is set to that of the observed. 19 

On the other hand, the other thresholds, TH1, TH2 and TH3, showed a significant overestimation, 20 

whereas the uncorrected ERA-20c showed a relatively small bias. Our results offer insight on how 21 

improper thresholds for the wet-day frequency may affect bias correction results, leading to a 22 

significant overestimation of daily rainfall. Such discrepancies may arise from the significantly 23 

different thresholds used to adjust the wet-day frequency. As illustrated in the previous section, the 24 

lower thresholds for TH4 were varied over the range 0-4.66 mm while the thresholds assumed in the 25 
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TH1, TH2 and TH3 are much lower than the one measured in the TH4, especially for the summer 1 

season (July-September). Indeed, the similar results seen in the 10-day moving mean suggests that our 2 

findings may be generalizable to cut-off thresholds seen in different locations and seasons, as shown 3 

in Figure 8(b) and Table 3. We also found that the bias associated with the cut-off thresholds 4 

significantly varied within a specific season, especially in the summer. The biases for both TH1 and 5 

TH2 range from 2.21 to 10.49 and from 1.92 to 10.09 during the summer, respectively, while TH3 and 6 

TH4 varied from 0.16 to 6.27 and from -1.06 to 2.97, respectively. 7 

 8 

(a) 9 

 10 

(b) 11 

 12 

Figure 8. A comparison of mean rainfall between the observation and the corrected ERA-20c with 13 

different thresholds [TH1(>0mm/day), TH2(>0.1mm/day), TH3(>1mm/day) and TH4(Frequency 14 

adjustment)] and the uncorrected ERA-20c (RAW)) on the annual basis. All values are averaged over 15 

all 48 stations from 1973 to 2010. (a) Monthly mean comparison between different thresholds and 16 

(b) observed 38-year (1973-2010) mean of daily precipitation (yellow bar) and its 10-day running 17 

mean (black solid line), along with a set of 10-day running means estimated from bias corrected 18 

ERA-20c daily precipitations using four different thresholds for all 48 stations. 19 
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 1 

Table 3. Comparisons of root-mean-square-error (RMSE) and Nash-Sutcliffe efficiency (NSE) 2 

between the observed and the corrected ERA-20c for different thresholds [TH1 (>0mm/day), TH2 3 

(>0.1mm/day), TH3 (>1mm/day) and TH4 (Frequency adjustment)] and the uncorrected ERA-20c 4 

precipitation.  5 

Data Measures TH1 TH2 TH3 TH4 ERA-20c 

Monthly mean 

(mm/month) 

RMSE (mm) 119.24 110.50 42.57 4.77 15.59 

NSE -0.899 -0.631 0.758 0.997 0.968 

10-days running 

mean. (mm/day) 

RMSE (mm) 4.03 3.74 1.49 0.51 0.56 

NSE -0.886 -0.622 0.744 0.970 0.963 

 6 

For the evaluation of the extreme rainfalls associated with different thresholds, we extracted rainfall 7 

events exceeding a given 99th threshold and we compared the four different thresholds for all stations. 8 

As illustrated in Figure 9, a systematic significant underestimation of extremes in the ERA-20c is most 9 

apparent, while the improvements appear to result from enhanced representation of the bias associated 10 

with extreme values regardless of the threshold. Specifically, TH4 performs the best with 0.755 for 11 

NSE and 27.33 mm for RMSE, followed by TH3, TH2 and TH1.The errors may be largely attributed 12 

to their number of data with different thresholds for a given time series. To be more specific, the lower 13 

threshold allows a relatively large number of data, while the higher threshold could reduce the number 14 

of available data. Given these results, TH4 could be the most reliable cut-off threshold for the ERA-15 

20c under the gQM approach. On the other hand, there remains considerable potential for improving 16 

extremes, especially over 300 mm/day. Thus, we will further explore the bias correction approach for 17 

the upper tail of the distribution.  18 

 19 
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 1 
Figure 9. Scatter plots between the observed and the modelled extreme rainfalls associated with 2 

different thresholds over the 99th percentile for all 48 stations. RAW indicates the uncorrected ERA-3 

20c and the others represent the results from the corrected ERA-20c by gQM with different 4 

thresholds [TH1(>0mm/day),TH2(>0.1mm/day), TH3(>1mm/day) and TH4(Frequency adjustment)]. 5 

 6 

 Bias correction based on a composite Gamma-GPD distribution  7 

This study applies a composite (or piecewise) distribution based QM approach which consists of 8 

gamma distribution and GPD, for a given set of thresholds. Here, after adopting TH4 as a lower 9 

threshold, the 95th or 99th quantiles have been considered as an upper threshold for the correction of 10 

extremes (gpQM95 and gpQM99). The composite distribution approach was evaluated by comparing 11 

the obtained extreme rainfalls from modelled ERA-20c with the ones observed for the baseline, as 12 

shown in Figure 10. In comparison with the extreme daily rainfalls over the 99th percentile, the GPD 13 

based bias correction schemes (i.e., gpQM99 and gpQM95) demonstrate better performance in terms 14 

of reproducing the extremes than gQM (Figure 10(a)). gpQM99 shows the best performance in terms 15 

of NSE with an efficiency of 0.906, and a good agreement was achieved with 0.879 in gpQM95, 16 

whereas the gQM was 0.755. For RMSE, gpQM99 (i.e., 16.92 mm) and gpQM95 (i.e., 19.16 mm) 17 
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showed a significant reduction of the errors by 38.1% and 29.9% relative to gQM (27.33 mm). 1 

Moreover, a comparison of the AMS rainfall also confirmed that gpQM99 and gpQM95 were capable 2 

of reproducing rainfall characteristics observed in the AMS more effectively than gQM. Specifically, 3 

gpQM99 showed the best performance with 0.912 for NSE and 18.80 mm for RMSE, whereas 4 

gpQM95 was 0.892 for NSE and 20.77 mm for RMSE. The results obtained in this study suggest that 5 

the gpQM approach is more appropriate to reduce the systematic errors in estimating extreme rainfalls 6 

than gQM. 7 

 8 

(a) 9 

 10 

(b) 11 
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 1 

Figure 10. Scatter plots for (a) the extreme rainfalls over the 99th percentile and (b) annual maximum 2 

series (AMS) extracted from the observed and the bias corrected ERA-20c daily precipitation over 3 

all 48 stations 4 

 5 

Apart from evaluating the models in the extreme cases, it is important to ensure that the proposed 6 

bias correction model with the GPD can reproduce the mean values as well. Again, we evaluate both 7 

the monthly mean and 10-day moving mean of the corrected daily precipitation as shown in Figure 11 8 

and Table 4. For the monthly mean, gQM and gpQM99 give the best performance (Figure 11(a)), 9 

leading to the highest efficiency for NSE of 0.997 for both methods, and the lowest RMSE, about 4.77 10 

to 5.12 mm/month, respectively (Table 4). For gpQM95, the efficiency for NSE is close to one, but the 11 

RMSE, 9.41 mm/month, is nearly twice those of gQM and gpQM99. In terms of the 10-day moving 12 

mean, the results have shown that all QM approaches work equally well, although gpQM99 offers the 13 

best performance (Table 4). More generally, the gpQM99 approach can effectively correct the biases 14 

associated with the upper tails of the distribution without a loss in the efficiency of the bias correction 15 

process. 16 

 17 
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(a) 1 

 2 

(b) 3 

 4 
Figure 11. A comparison of mean rainfall between the observation and the corrected ERA-20c with 5 

different QM approaches. (a) Monthly mean comparison between different QMs and (b) observed 6 

38-year (1973-2010) mean of daily precipitation (yellow bar) and its 10-day running mean (black 7 

solid line), along with a set of 10-day running means estimated from bias corrected ERA-20c daily 8 

precipitations using three different QM approaches for all 48 stations. 9 

 10 

Table 4. A comparison of the mean values between the observed and modelled data (i.e. the 11 

corrected ERA-20c by gQM, gpQM95 and gpQM99, and the uncorrected ERA-20c)  12 

Data Measures gQM gpQM95 gpQM99 ERA-20c 

Monthly mean 

(mm/month) 

RMSE (mm) 4.77 9.41 5.12 15.59 

NSE 0.997 0.988 0.997 0.968 

10-days running 

mean. (mm/day) 

RMSE (mm) 0.507 0.545 0.497 0.563 

NSE 0.970 0.966 0.971 0.963 

 13 

It should be noted that the bias still remains large in the summer season as seen in the 10-day moving 14 

mean. The difference was mainly attributed to the discrepancies in the seasonal or monthly distribution 15 

of the heavy rainfall events between the observed and modelled data (Nyunt et al., 2016). In other 16 

words, there is a clear difference in the monthly number of extreme events over the 95th or 99th 17 



 

28 

 

thresholds between the observed and ERA-20c (Figure 12), and this is considered to be the main source 1 

of the bias in terms of extremes in the intra-seasonal band. The results obtained in these experiments 2 

imply that the upper thresholds could be different (or updated) for each month to better represent the 3 

intra-seasonal change. On the other hand, estimation of different thresholds on the monthly basis could 4 

lead to unreliable estimates of extreme values due to insufficient data for estimating the GPD 5 

parameters. 6 

 7 

 8 

 9 
Figure 12. Monthly mean frequency of the heavy rainfalls over the 95th and 99th percentile from the 10 

observed (Obs) and ERA-20c daily precipitation. Here, the mean frequency is averaged over 48 11 

stations from 1973 to 2010 12 

 13 

 Spatial interpolation on bias correction parameters 14 

The proposed IM-PCM approach is validated by leave-one-out cross validation. In this study, we 15 

estimated a set of parameters for the observation of daily precipitation, and the estimated parameters 16 

were then used to build contour maps. For extreme values of the interpolated daily precipitation, POTs 17 

exceeding a given 99th percentile and AMS were first constructed and compared between three 18 

different QM approaches including gQM, gpQM95 and gpQM99. Note again that all results were 19 

obtained from the cross-validation procedure having considered different possible samples. As 20 

illustrated in Figure 13 (a), the corrected extremes using an interpolated set of parameters by IM-PCM 21 

showed good agreement with the observed values for the three QMs. Among them, gpQM95 and 22 

gpQM99 gave the best performance for the given POTs (Figure 13 (a)) with 0.781 for NSE, and 0.714 23 
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for gQM. Similar results were obtained for the RMSE. Moreover, the proposed gpQM99 approach 1 

using the interpolated parameters was capable of reproducing the AMS with 26.35 mm for RMSE and 2 

0.827 for NSE (Figure 13 (b)). However, it should be noted that an increased bias exists, which is 3 

largely attributable to the parameter interpolation process. For example, the RMSE in AMS using 4 

gpQM99 with IM-PCM increased from 18.80 to 26.35 mm for RMSE when compared with a pointwise 5 

bias correction as already seen in Figure 10(b). A similar increase (i.e. 20.77 to 26.30 mm) was also 6 

observed in the gpQM95. Nevertheless, the RMSE for the corrected AMS data by IM-PCM with 7 

gpQM99, 26.35 mm, is still smaller than that of the pointwise bias correction from gQM, 28.07 mm.  8 

 9 

(a) 10 

 11 

(b) 12 
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 1 

Figure 13. Scatter plots for (a) the extreme rainfalls over the 99th percentile and (b) annual maximum 2 

series (AMS) extracted from the observed and the bias corrected ERA-20c daily precipitation over 3 

all 48 stations. All the results presented here are obtained by leave-one-out cross validation. 4 

 5 

In terms of the mean precipitation, the monthly mean and 10-day moving average of bias corrected 6 

rainfall using a set of parameters obtained from IM-PCM were evaluated (Figure 14 and Table 5). 7 

Although all three QM approaches yielded slightly different estimates, overall favorable performance 8 

was obtained for the monthly mean with a model efficiency over 0.98 for NSE. Among the options, 9 

gQM and gpQM99 performed the best and showed the lowest RMSE (Figure 14(a) and Table 5). Figure 10 

14 (b) shows a similar result for the 10-day moving average with an efficiency over 0.96 for NSE.  11 

 12 

(a) 13 
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 1 

(b) 2 

 3 

Figure 14. A comparison of cross validation results for the mean rainfall between the observation 4 

and the corrected ERA-20c with different QM approaches. (a) Monthly mean comparison between 5 

different QMs and (b) observed 38-year (1973-2010) mean of daily precipitation (yellow bar) and its 6 

10-day running mean (black solid line), along with a set of 10-day running means estimated from 7 

bias corrected ERA-20c daily precipitations using three different QM approaches for all 48 stations. 8 

All the results presented here are obtained by leave-one-out cross validation. 9 

 10 

Table 5. A comparison of the mean values between the observed and the modelled precipitation for 11 

three different approaches by using a set of parameters interpolated from IM-PCM within the leave-12 

one-out cross validation framework 13 

Data Measures gQM gpQM95 gpQM99 ERA-20c 

Monthly mean 

(mm/month) 

RMSE (mm) 4.14 10.31 5.27 15.59 

NSE 0.998 0.986 0.996 0.968 

10-days running 

mean. (mm/day) 

RMSE (mm) 0.502 0.562 0.498 0.563 

NSE 0.971 0.963 0.971 0.963 

 14 

For a more specific analysis in each weather station in the context of cross validation, we generated 15 

a map showing the spatial errors in both AMS rainfalls and mean. The AMS errors were evaluated by 16 
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RMSE and NSE in Figure 15. For the mean, we additionally evaluated the IM-PCM method by 1 

estimating the relative error between the observed and modelled in Figure 16. As shown in the figures, 2 

for the AMS rainfalls, gpQM95 and gpQM99 generally perform well except for a few stations. Most 3 

stations showed NSE over 0.8 and RMSE less than 30mm. For the mean daily rainfall, the relative 4 

errors are generally below 10%. Given these results, the proposed gpQM approaches, especially for 5 

gpQM99, with IM-PCM can effectively rectify the spatial-temporal bias of the ERA-20c model data 6 

without a loss in efficiency for the mean values. The interpolated parameter of the transfer function 7 

including the wet-day frequency over each of these grids covered the entire South Korea can be 8 

interpreted as an approximation of the observed rainfall over that grid. The accuracy of the interpolated 9 

parameters (or rainfall estimates) are largely affected by potential bias associated with spatial 10 

interpolation and inadequate sampling of rain gauges. We acknowledge that the potential bias in the 11 

interpolated rainfall estimates can be attributed to a limited number of rain gauges and the systematic 12 

bias in the rainfall scenarios. 13 

(a) 14 

 15 

(b) 16 

 17 

Figure 15. Cross validation results of the IM-PCM for the annual maximum series rainfalls of the 18 
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bias corrected data by QM approaches (gQM, gpQM95 and gpQM99) over 48 grid points. (a) Nash-1 

Sutcliffe efficiency (NSE) and (b) root-mean-square-error (RMSE).  2 

 3 

 4 

Figure 16. Relative error of the bias-corrected mean rainfalls by QM approaches (gQM, gpQM95 5 

and gpQM99) in 48 grid points compared with the corresponding in-situs.  6 

 7 

It is well known that precipitation is mainly influenced by the topology in mountainous areas, so 8 

numerous studies have used elevation as an exogenous factor for rainfall interpolation (Goovaerts, 9 

2000; Lloyd, 2005; Adhikary et al., 2017). We therefore explored the relationship between the 10 

elevation and parameters for all 48 stations. As summarized in Table 6, the Pearson correlation r-values 11 

were not statistically significant, leading to a weak dependence between the elevation and parameters. 12 

The results imply that the elevation may not be important in terms of the interpolation of the parameter. 13 

In summary, the proposed interpolation scheme for the QM approach provided bias corrected long-14 

term precipitation data, especially for ungauged catchments. On the other hand, the proposed approach 15 

was easy to use and may help to reduce bias associated with the interpolation of daily precipitation. 16 

Moreover, this approach can be further used to obtain a century-long daily precipitation series over the 17 

Korean peninsula, which could be useful in terms of reducing uncertainty in the parameter estimation 18 

of rainfall frequency analysis. 19 

 20 

Table 6. Pearson correlation coefficients(r) between elevations and parameters for gQM, gpQM95 21 

and gpQM99 for all 48 stations  22 

Type Gamma Distribution GPD 
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Para. 
r 

Para. r 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

gQM 

𝛼 

-0.40 -0.14 0.06 0.18 0.07 0.16 0.22 0.06 0.15 0.00 -0.06 -0.14 

ξ 

- 

gpQM95 -0.37 -0.13 0.05 0.17 0.09 0.19 0.26 0.09 0.15 0.12 -0.13 -0.18 -0.01 

gpQM99 -0.40 -0.14 0.06 0.18 0.07 0.16 0.24 0.08 0.14 0.03 -0.08 -0.14 -0.05 

gQM 

𝛽 

0.09 -0.15 -0.25 -0.22 -0.14 -0.20 -0.11 -0.11 -0.02 0.17 -0.02 -0.11 

𝜃 

- 

gpQM95 0.02 -0.16 -0.22 -0.23 -0.20 -0.25 -0.18 -0.14 -0.08 -0.10 0.02 -0.08 -0.05 

gpQM99 0.09 -0.14 -0.25 -0.23 -0.17 -0.21 -0.13 -0.16 -0.03 0.09 -0.03 -0.11 -0.01 

 1 

 2 

The bias correction methods developed in this study both statistically improved the quality of the 3 

data and could extend daily precipitation over the 20th century in South Korea. More specifically, this 4 

study further utilizes the derived transfer function for the baseline period 1973-2010 to provide the 5 

daily precipitation for the period 1900-2010 under the stationary assumption. Finally, we explored 6 

changes in the mean and extreme using the gpQM99 approach for three different periods, 1900-1972, 7 

1973-2010 and 1900-2010, in the context of a retrospective analysis. As shown in Figure 17 (a), the 8 

evaluation results for the monthly mean show a very noticeable and sudden increase in the recent 9 

period, especially for the summer season (July-September), while no significant changes were 10 

observed for dry season (October-April). Figure 17 (b) shows boxplots representing a distribution of 11 

the AMS for the three periods. The distribution of the AMS derived from the gpQM99 approach for 12 

the period 1973-2010 was almost identical to that of the observed, which indicates that the proposed 13 

gpQM99 was capable of reproducing the extremes of daily precipitations. As expected from the 14 

changes in summer rainfall, the distribution of the AMS for the recent period 1973-2010 is much wider 15 

than that of the period 1900-1972 (i.e. gpQM99-1), especially for the upper tail of the distribution. 16 

This may lead to an increase in design rainfalls for a specific return period. On the other hand, the 17 

distribution of the AMS for the entire period 1900-2010 is quite similar to that of the observed in terms 18 

of median AMS, while its range is relatively narrower than the recent period. 19 

 20 

(a) 21 



 

35 

 

 1 

(b) 2 

 3 

Figure 17. A retrospective analysis for a comparison between the observed precipitation (1973-2010) 4 

and the corrected ERA-20c by gpQM99 with three different periods:1900-1972 (gpQM99-1), 1973-5 

2010 (gpQM99-2) and 1900-2010 (gpQM99-3). (a) Monthly mean rainfalls and (b) box plot of the 6 

annual maximum series (AMS) rainfalls. 7 

 8 

 9 

Concluding remarks 10 

The main objective of this study was to explore the century-long reanalysis data, ERA-20c, 11 

especially for daily precipitation over South Korea in the context of bias correction. We first 12 

investigated the utility of the ERA-20c data as a proxy data over South Korea for hydrological 13 

applications and further examined several issues concerning the aspects of the bias correction that 14 

influence the use of modelled data in practice. In general, we found that there is a fairly good agreement 15 

between the observed and the ERA reanalysis data for the baseline period 1973-2010. On the one hand, 16 
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the results obtained here have shown that the ERA-20c precipitation data still have their own 1 

systematic biases, particularly in the frequency of wet-days and the extreme upper tail of the 2 

distribution. More specifically, the over-pronounced frequency of wet-days and the considerable 3 

underestimation of daily precipitation have been identified in the ERA-20c over South Korea. Given 4 

these results, we proposed a two-stage bias correction approach to daily precipitation, which is 5 

comprised of two distinct parts: a model for adjusting the overestimated wet-day frequency and a 6 

model for reducing the biases associated with extreme values. To adjust the wet-day frequency, we 7 

explored four different thresholds through an experiment with the QM approach. In terms of extremes, 8 

a composite Gamma-GPD distribution based QM approach was introduced. Finally, we proposed an 9 

IM-PCM approach as an alternative to constructing the transfer function for the ungauged basin. The 10 

key findings obtained in this analysis are summarized as follows: 11 

 12 

1. Our findings are consistent with the notion that the mean daily precipitation is reproduced well 13 

by the reanalysis. Our study also confirms that the mean and annual cycle of daily precipitation 14 

as observed over South Korea is well simulated by the ERA-20c reanalysis. However, 15 

considerable underestimation of the daily maximum precipitation was consistently seen in the 16 

ERA-20c, especially during the summer season. The results presented here illustrate that the 17 

heavy rainfalls in the summer season could be significantly underestimated by the current 18 

climate modelling system, although the reanalysis system adequately reproduces the mean 19 

climate of the historical period. Another issue with respect to the evaluation of ERA-20c daily 20 

precipitation is related to the much higher frequency of wet-days than that of the observed, which 21 

may in turn influence the underestimation of the extremes.  22 

2. In this study, a two-stage bias correction approach to the ERA-20c precipitation was proposed 23 

to adjust the overestimated wet-day frequency and the biases associated with the upper tail of 24 

the distribution. In terms of the wet-day frequency, we examined four different types of 25 

thresholds (i.e., TH1, TH2, TH3 and TH4) to identify an optimal threshold. TH4 is the case where 26 
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the frequency of wet-days of ERA-20c is set to that of the observed and produces the best results 1 

among the four. Moreover, TH4 is allowed to have different thresholds for each month, unlike 2 

the other three approaches (i.e., TH1, TH2 and TH3) in which a fixed value was assumed over 3 

all the months for all the stations. Our results offer insights on how inappropriate thresholds for 4 

the wet-day frequency may significantly influence the bias correction results. To better represent 5 

the bias in the extreme rainfall, we proposed a composite distribution based QM approach, which 6 

consists of the gamma distribution and GPD for the two thresholds (i.e., the 95th and 99th 7 

percentiles). Given the efficiency gains, this study suggests that the gpQM approach is more 8 

appropriate to reduce the systematic errors in estimating extreme rainfalls than gQM. To be more 9 

specific, the gpQM99 approach can effectively reduce the biases in the upper tails of the 10 

distribution without a loss of efficiency in the overall bias correction process. However, a large 11 

bias still exists in the summer season, and thus the bias in extreme rainfall that the qpQM99 12 

offers in the process of bias correction suggests that the ERA-20c data might be insufficient in 13 

terms of reflecting the specific regional patterns associated with extreme rainfall over South 14 

Korea.  15 

3. We explored an alternative to obtain the transfer function of the QM approach for the ungauged 16 

catchments in the context of the cross-validation process. From this perspective, we have 17 

proposed an interpolation method based on parameter contour maps (IM-PCM), which is based 18 

on the interpolation of the five parameters over the entire region of interest. The corrected daily 19 

precipitation series using an interpolated set of parameters by the IM-PCM showed good 20 

agreement with the observed precipitation, and particularly the proposed gpQM99 with the IM-21 

PCM performs the best in terms of reducing the spatial-temporal bias of the ERA-20c model 22 

data without a loss of efficiency. We finally utilized the derived transfer function for the baseline 23 

period 1973-2010 to extend the daily precipitation for the period 1900-2010 under the stationary 24 

assumption, and we examined the changes in daily precipitation for three different periods, 1900-25 
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1972, 1973-2010 and 1900-2010, as a retrospective analysis. We found that a very noticeable 1 

and sudden increase in the recent period was observed during the summer season (July-2 

September). 3 

 4 

The findings demonstrated in this study help to understand the knowledge gaps about the bias 5 

correction of the century-long reanalysis, ERA-20c, as well as the key characteristics of daily 6 

precipitation over South Korea. Further, the results obtained here can provide a useful perspective on 7 

the bias correction of the modelled data in the reanalysis and regional climate modelling systems for 8 

the regional-scale analysis with a limited network of rainfall stations. The impact of climate change on 9 

water resources using the extended daily precipitation data for the period 1900-2010 will be explored 10 

further. Although the study has been carried out in South Korea, the methodology has the potential to 11 

be applied in other parts of the world. We hope this paper will stimulate the hydrometeorological 12 

community to explore the issues raised in the long-term reanalysis data in other countries under 13 

different climate and geographical conditions. 14 

 15 

Acknowledgements 16 

The first author is funded by the Government of South Korea for carrying out his doctoral studies at 17 

the University of Bristol. We are grateful for the relevant data provided by KMA and ECMWF. The 18 

second author is supported by a grant (17AWMP-B121100-02) from Advanced Water Management 19 

Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean 20 

government. The abbreviations and symbols used in this study are listed in Appendix B.  21 

 22 

  23 



 

39 

 

Appendix A 1 

2 

3 

4 



 

40 

 

 1 

Figure A1. Comparison of the deviation corresponding to the rank in top 50 events for the baseline 2 

period (1973-2010) in 48 stations. 3 

  4 
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Appendix B  1 

Table A1. List of Abbreviations 2 

ID Definitions 

AIC Akaike information criterion  

AMS Annual maximum series 

BIC Bayesian information criterion  

CDF Cumulative distribution functions 

ECMWF European Centre for Medium-Range Weather Forecasts 

ERA-20c ECWMF’s 20th century reanalysis assimilated by surface observations only 

ERA-20cm ECMWF’s 20th century atmospheric model ensemble  

GEV Generalized extreme value distribution 

GPD Generalized Pareto distribution 

gpQM Quantile mapping approach based on a composite distribution of gamma and GPD 

gpQM95/ 

gpQM99 
gpQM with the upper tail of 95th/99th percentile 

gQM Quantile mapping approach based on a gamma distribution 

GUM Gumbel distribution 

IDW Inverse distance weighting  

IM-PCM Interpolation method based on the parameter contour map 

KMA Kora Meteorological Administration 

LOGN Log-normal distribution 

NOAA National Oceanic and Atmospheric Administration 

NSE Nash-Sutcliffe efficiency 

POT Peak over threshold 

r Pearson correlation coefficient 

RMSE Root mean square error 

QM Quantile mapping 

WEI Weibull distribution 

20CR The 20th century reanalysis by the NOAA 

 3 

Table A2. List of Symbols 4 

ID Definitions 

RAW Uncorrected ERA-20c daily precipitation 

TH Cut-off threshold for quantile mapping (QM) approach 

𝛼 shape parameter of a gamma distribution   

𝛽 scale parameter of a gamma distribution   

𝜉 Shape parameter of a GPD 

𝜃 Scale parameter of a GPD 

u High upper threshold for a GPD 

 5 

 6 

7 



 

42 

 

References 1 

Acero FJ, García JA, Gallego MC. 2011. Peaks-over-threshold study of trends in extreme rainfall over 2 

the Iberian Peninsula. Journal of Climate 24 (4): 1089–1105 DOI: 10.1175/2010JCLI3627.1 3 

Adhikary SK, Muttil N, Yilmaz AG. 2017. Cokriging for enhanced spatial interpolation of rainfall in 4 

two Australian catchments. Hydrological Processes 31 (12): 2143–2161 DOI: 10.1002/hyp.11163 5 

Bao X, Zhang F. 2013. Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 6 

reanalysis datasets against independent sounding observations over the Tibetan Plateau. Journal 7 

of Climate 26 (1): 206–214 8 

Befort DJ, Wild S, Kruschke T, Ulbrich U, Leckebusch GC. 2016. Different long-term trends of extra-9 

tropical cyclones and windstorms in ERA-20C and NOAA-20CR reanalyses. Atmospheric 10 

Science Letters 17 (11): 586–595 DOI: 10.1002/asl.694 11 

Betts AK, Beljaars ACM. 2017. Analysis of near-surface biases in ERA-Interim over the Canadian 12 

Prairies. Journal of Advances in Modeling Earth Systems 9 (5): 2158–2173 DOI: 13 

10.1002/2017MS001025 14 

Bosilovich MG, Chen J, Robertson FR, Adler RF. 2008. Evaluation of global precipitation in 15 

reanalyses. Journal of Applied Meteorology and Climatology 47 (9): 2279–2299 16 

Brands S, Gutiérrez JM, Herrera S, Cofiño AS. 2012. On the use of reanalysis data for downscaling. 17 

Journal of Climate 25 (7): 2517–2526 DOI: 10.1175/JCLI-D-11-00251.1 18 

Chai T, Draxler RR. 2014. Root mean square error (RMSE) or mean absolute error (MAE)? -19 

Arguments against avoiding RMSE in the literature. Geoscientific Model Development 7 (3): 20 

1247–1250 DOI: 10.5194/gmd-7-1247-2014 21 

Chan SC, Kendon EJ, Roberts NM, Fowler HJ, Blenkinsop S. 2015. Downturn in scaling of UK 22 

extreme rainfall with temperature for future hottest days. Nature Geoscience 9 (1): 24–28 DOI: 23 

10.1038/ngeo2596 24 

Coles SG. 2001. An introduction to Statistical Modeling of Extreme Values. Springer: London. DOI: 25 

10.1007/978-1-4471-3675-0 26 

Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, 27 

Rutledge G, Bessemoulin P. 2011. The twentieth century reanalysis project. Quarterly Journal of 28 

the royal meteorological society 137 (654): 1–28 29 

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, 30 

Balsamo G, Bauer P. 2011. The ERA‐Interim reanalysis: Configuration and performance of the 31 

data assimilation system. Quarterly Journal of the royal meteorological society 137 (656): 553–32 

597 33 



 

43 

 

Donat MG, Alexander L V, Herold N, Dittus AJ. 2016. Temperature and precipitation extremes in 1 

century‐long gridded observations, reanalyses, and atmospheric model simulations. Journal of 2 

Geophysical Research: Atmospheres 121 (19) 3 

Fang G, Yang J, Chen YN, Zammit C. 2015. Comparing bias correction methods in downscaling 4 

meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and 5 

Earth System Sciences 19 (6): 2547–2559 6 

Frank CW, Wahl S, Keller JD, Pospichal B, Hense A, Crewell S. 2018. Bias correction of a novel 7 

European reanalysis data set for solar energy applications. Solar Energy 164 (December 2017): 8 

12–24 DOI: 10.1016/j.solener.2018.02.012 9 

Gao L, Bernhardt M, Schulz K, Chen XW, Chen Y, Liu MB. 2016. A First Evaluation of ERA-20CM 10 

over China. Monthly Weather Review 144 (1): 45–57 DOI: 10.1175/Mwr-D-15-0195.1 11 

Goovaerts P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation 12 

of rainfall. Journal of Hydrology 228 (1–2): 113–129 DOI: 10.1016/S0022-1694(00)00144-X 13 

Gupta H V., Kling H, Yilmaz KK, Martinez GF. 2009. Decomposition of the mean squared error and 14 

NSE performance criteria: Implications for improving hydrological modelling. Journal of 15 

Hydrology 377 (1–2): 80–91 DOI: 10.1016/j.jhydrol.2009.08.003 16 

Gutjahr O, Heinemann G. 2013. Comparing precipitation bias correction methods for high-resolution 17 

regional climate simulations using COSMO-CLM. Theoretical and Applied Climatology 114 (3): 18 

511–529 DOI: 10.1007/s00704-013-0834-z 19 

Haerter JO, Eggert B, Moseley C, Piani C, Berg P. 2015. Statistical precipitation bias correction of 20 

gridded model data using point measurements. Geophysical Research Letters 42 (6): 1919–1929 21 

DOI: 10.1002/2015GL063188 22 

Hersbach H, Peubey C, Simmons A, Berrisford P, Poli P, Dee D. 2015. ERA‐20CM: a twentieth‐23 

century atmospheric model ensemble. Quarterly Journal of the royal meteorological society 141 24 

(691): 2350–2375 25 

Hundecha Y, Pahlow M, Schumann A. 2009. Modeling of daily precipitation at multiple locations 26 

using a mixture of distributions to characterize the extremes. Water Resources Research 45 27 

(w12412): 1–15 DOI: 10.1029/2008WR007453 28 

IPCC. 2014. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects. 29 

Cambridge University Press. 30 

Kim D-I, Han D. 2018. Comparative study on long term climate data sources over South Korea. 31 

Journal of Water and Climate Change (in press) DOI: 10.2166/wcc.2018.032 32 

Kim KB, Bray M, Han D. 2015a. An improved bias correction scheme based on comparative 33 

precipitation characteristics. Hydrological Processes 29: 2258–2266 DOI: 10.1002/hyp.10366 34 



 

44 

 

Kim KB, Kwon HH, Han D. 2015b. Bias correction methods for regional climate model simulations 1 

considering the distributional parametric uncertainty underlying the observations. Journal of 2 

Hydrology 530: 568–579 DOI: 10.1016/j.jhydrol.2015.10.015 3 

Krueger O, Schenk F, Feser F, Weisse R. 2013. Inconsistencies between long-term trends in storminess 4 

derived from the 20CR reanalysis and observations. Journal of Climate 26 (3): 868–874 DOI: 5 

10.1175/JCLI-D-12-00309.1 6 

de Leeuw J, Methven J, Blackburn M. 2015. Evaluation of ERA-Interim reanalysis precipitation 7 

products using England and Wales observations. Quarterly Journal of the Royal Meteorological 8 

Society 141 (688): 798–806 DOI: 10.1002/qj.2395 9 

Legates DR, McCabe Jr. GJ. 1999. Evaluating the Use of ‘Goodness of Fit’ Measures in Hydrologic 10 

and Hydroclimatic Model Validation. Water Resources Research 35 (1): 233–241 DOI: 11 

10.1029/1998WR900018 12 

Liu Z, Zhou P, Chen G, Guo L. 2014. Evaluating a coupled discrete wavelet transform and support 13 

vector regression for daily and monthly streamflow forecasting. Journal of Hydrology 519 (PD): 14 

2822–2831 DOI: 10.1016/j.jhydrol.2014.06.050 15 

Lloyd CD. 2005. Assessing the effect of integrating elevation data into the estimation of monthly 16 

precipitation in Great Britain. Journal of Hydrology 308 (1–4): 128–150 DOI: 17 

10.1016/j.jhydrol.2004.10.026 18 

Ma L, Zhang T, Frauenfeld OW, Ye B, Yang D, Qin D. 2009. Evaluation of precipitation from the 19 

ERA‐40, NCEP‐1, and NCEP‐2 Reanalyses and CMAP‐1, CMAP‐2, and GPCP‐2 with ground‐20 

based measurements in China. Journal of Geophysical Research: Atmospheres 114 (D9) 21 

Macias D, Garcia-Gorriz E, Dosio A, Stips A, Keuler K. 2018. Obtaining the correct sea surface 22 

temperature: bias correction of regional climate model data for the Mediterranean Sea. Climate 23 

Dynamics 51 (3): 1095–1117 DOI: 10.1007/s00382-016-3049-z 24 

Manton MJ, Haylock MR, Hennessy KJ, Nicholls N, Chambers LE, Collins DA, Daw G, Finet A, 25 

Gunawan D, Inape K, et al. 2001. Trends in Extreme Daily Rainfall and Temperature in Southeast 26 

Asia and the South Pacific : 1961 – 1998. International Journal of Climatology 21: 269–284 DOI: 27 

10.1002/joc.610 28 

Mao G, Vogl S, Laux P, Wagner S, Kunstmann H. 2015. Stochastic bias correction of dynamically 29 

downscaled precipitation fields for Germany through Copula-based integration of gridded 30 

observation data. Hydrology and Earth System Sciences 19 (4): 1787–1806 DOI: 10.5194/hess-31 

19-1787-2015 32 

Maraun D. 2016. Bias Correcting Climate Change Simulations - a Critical Review. Current Climate 33 

Change Reports 2 (4): 211–220 DOI: 10.1007/s40641-016-0050-x 34 



 

45 

 

Maraun D, Widmann M. 2018. Statistical Downscaling and Bias Correction for Climate Research. 1 

Cambridge University Press. 2 

Mohanty S, Jha MK, Raul SK, Panda RK, Sudheer KP. 2015. Using Artificial Neural Network 3 

Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites. Water 4 

Resources Management 29 (15): 5521–5532 DOI: 10.1007/s11269-015-1132-6 5 

Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, 6 

Batka M. 2009. Climate change: Impact on agriculture and costs of adaptation. International 7 

Food Policy Research Institute. 8 

Nyunt CT, Koike T, Yamamoto A. 2016. Statistical bias correction for climate change impact on the 9 

basin scale precipitation in Sri Lanka , Philippines , Japan and Tunisia. (January) DOI: 10 

10.5194/hess-2016-14 11 

Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. 2005. Impact of regional climate change on 12 

human health. Nature 438 (7066): 310–317 13 

Piani C, Haerter JO, Coppola E. 2010. Statistical bias correction for daily precipitation in regional 14 

climate models over Europe. Theoretical and Applied Climatology 99 (1): 187–192 DOI: 15 

10.1007/s00704-009-0134-9 16 

Poli P, Hersbach H, Dee DP, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DGH, Peubey C, 17 

Thépaut J-N. 2016. ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. Journal of 18 

Climate 29 (11): 4083–4097 19 

Poli P, Hersbach H, Tan D, Dee D, Thépaut J-N, Simmons A, Peubey C, Laloyaux P, Komori T, 20 

Berrisford P, et al. 2013. The data assimilation system and initial performance evaluation of the 21 

ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C) 22 

Rabiei E, Haberlandt U. 2015. Applying bias correction for merging rain gauge and radar data. Journal 23 

of Hydrology 522: 544–557 24 

Schmidli J, Frei C, Vidale PL. 2006. Downscaling from GCM precipitation: a benchmark for 25 

dynamical and statistical downscaling methods. International Journal of Climatology 26 (5): 26 

679–689 27 

Simmons AJ, Poli P, Dee DP, Berrisford P, Hersbach H, Kobayashi S, Peubey C. 2014. Estimating low-28 

frequency variability and trends in atmospheric temperature using ERA-Interim. Quarterly 29 

Journal of the Royal Meteorological Society 140 (679): 329–353 DOI: 10.1002/qj.2317 30 

Smith A, Freer J, Bates P, Sampson C. 2014. Comparing ensemble projections of flooding against 31 

flood estimation by continuous simulation. Journal of Hydrology 511: 205–219 DOI: 32 

10.1016/j.jhydrol.2014.01.045 33 

Teutschbein C, Seibert J. 2012. Bias correction of regional climate model simulations for hydrological 34 



 

46 

 

climate-change impact studies: Review and evaluation of different methods. Journal of 1 

Hydrology 456: 12–29 2 

Themeßl MJ, Gobiet A, Leuprecht A. 2012. Empirical-statistical downscaling and error correction of 3 

daily precipitation from regional climate models. International Journal of Climatology 31 (10): 4 

1530–1544 DOI: 10.1002/joc.2168 5 

Volosciuk C, Maraun D, Vrac M, Widmann M. 2017. A combined statistical bias correction and 6 

stochastic downscaling method for precipitation. Hydrology and Earth System Sciences 21 (3): 7 

1693–1719 DOI: 10.5194/hess-21-1693-2017 8 

Vörösmarty CJ, Green P, Salisbury J, Lammers RB. 2000. Global water resources: vulnerability from 9 

climate change and population growth. science 289 (5477): 284–288 DOI: 10 

10.1126/science.289.5477.284 11 

Vrac M, Friederichs P. 2015. Multivariate-intervariable, spatial, and temporal-bias correction. Journal 12 

of Climate 28 (1): 218–237 DOI: 10.1175/JCLI-D-14-00059.1 13 

Vrac M, Naveau P. 2007. Stochastic downscaling of precipitation : From dry events to heavy rainfalls. 14 

Water Resources Research 43 (w07402): 1–13 DOI: 10.1029/2006WR005308 15 

Wȩglarczyk S. 1998. The interdependence and applicability of some statistical quality measures for 16 

hydrological models. Journal of Hydrology 206 (1–2): 98–103 DOI: 10.1016/S0022-17 

1694(98)00094-8 18 

Wilks DS. 1999. Interannual variability and extreme-value characteristics of several stochastic daily 19 

precipitation models. Agricultural and Forest Meteorology 93 (3): 153–169 DOI: 10.1016/S0168-20 

1923(98)00125-7 21 

Wilson PS, Toumi R. 2005. A fundamental probability distribution for heavy rainfall. Geophysical 22 

Research Letters 32 (14): 1–4 DOI: 10.1029/2005GL022465 23 

 24 

 25 

 26 


