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Abstract 

In this paper, we present a comparative study of bias correction methods for regional climate model 

simulations considering the distributional parametric uncertainty underlying the observations/models. In 

traditional bias correction schemes, the statistics of the simulated model outputs are adjusted to those of the 

observation data. However, the model output and the observation data are only one case (i.e., realization) out 

of many possibilities, rather than being sampled from the entire population of a certain distribution due to 

internal climate variability. This issue has not been considered in the bias correction schemes of the existing 

climate change studies. Here, three approaches are employed to explore this issue, with the intention of 

providing a practical tool for bias correction of daily rainfall for use in hydrologic models ((1) conventional 

method, (2) non-informative Bayesian method, and (3) informative Bayesian method using a weather 

generator (WG) data). The results show some plausible uncertainty ranges of precipitation after correcting for 

the bias of RCM precipitation. The informative Bayesian approach shows a narrower uncertainty range by 

approximately 25% to 45% than the non-informative Bayesian method after bias correction for the baseline 

period. This indicates that the prior distribution derived from WG may assist in reducing the uncertainty 

associated with parameters. The implications of our results are of great importance in hydrological impact 

assessments of climate change because they are related to actions for mitigation and adaptation to climate 

change. Since this is a proof of concept study that mainly illustrates the logic of the analysis for uncertainty-

based bias correction, future research exploring the impacts of uncertainty on climate impact assessments and 

how to utilize uncertainty while planning mitigation and adaptation strategies is still needed. 

 

Keywords: climate change, internal climate variability, uncertainty, Bayesian, likelihood   
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1. Introduction 

Quantifying uncertainty in estimates of future climate change for use in climate impact simulations is a 

necessary step for detection, attribution, and mitigation and adaptation strategies (Deser et al., 2012b). Hence, 

demand for more quantitative analyses of future climate change is increasing (Collins et al., 2012). These 

uncertainties are due to scenario uncertainty, model uncertainty, and internal climate variability (Hawkins and 

Sutton, 2009; Tebaldi and Knutti, 2007). Internal climate variability results from natural fluctuations.  Some 

recent studies have drawn attention to the contributions of natural variability to climate change (Deser et al., 

2012a; Hawkins and Sutton, 2009; Kendon et al., 2008; Knutti and Sedláček, 2013; Tebaldi et al., 2011; Zunz 

et al., 2013). The uncertainties of climate projections due to natural variability are considered to be irreducible 

(Fischer et al., 2013; Smith et al., 2007).   

Although bias correction is controversial (Ehret et al., 2012; Muerth et al., 2013), bias correction methods 

have been successfully and widely applied in climate change studies (Dosio and Paruolo, 2011; Piani and 

Haerter, 2012; Rojas et al., 2011). In climate change studies, 30 years of observation data are generally used 

as a reference, as defined by the World Meteorological Organization (WMO). However, each observation is 

only one case out of many possibilities, rather than being sampled from the entire population of a certain 

distribution, due to distributional parametric uncertainties that have not been considered in the existing bias 

correction schemes used in the past climate change studies. This has particularly important implications for 

uncertainties associated with the parameters of the probability density function (PDF) used for correcting bias 

in climate model outputs, since in traditional bias correction schemes the statistics of the simulated model 

outputs are adjusted to those of the observation data, which is only one realization of many possibilities. The 

uncertainty in parameter estimates is directly related to the sample size and the quality of available 

information. In other words, distributional parametric uncertainty exists when limited amounts of hydrologic 

data are used to estimate the parameters of PDF. Both the natural randomness of hydrologic data and the 

distributional parametric uncertainty in bias correction may contribute to the uncertainty in future climate 

change projections. However, most studies of uncertainties in hydrologic studies have focused on 

measurement uncertainties mainly resulting from the spatial integration of measurements across different sites. 

Here we do not consider measurement error, but concentrate on distributional parametric uncertainty. In other 
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words, measurement error and its impact on bias correction for future projections are not included in this 

study, but could be added in future analyses if needed. 

In this paper, we explore the following questions: 

(1) Can uncertainties in observation and regional climate model output with respect to distributional 

parametric uncertainty be modelled simultaneously and consistently? 

(2) Climate change studies use weather generators (WG) informed by global climate model (GCM) or 

regional climate model (RCM) integration (forecast or climate change) for downscaling. 

A. Is it better to use precipitation sequences simulated from the WG as a prior distribution instead 

of a non-informative prior? Does the WG really add value?  

B. Does a combination of the WG and Bayesian model better inform uncertainty? 

(3) Can a Bayesian-based bias correction model offer useful scenarios of daily precipitation for climate 

change studies? 

In this study, three approaches are employed to explore these questions, with the intention of providing a 

practical tool for bias correction of daily rainfall for use in hydrologic models. The approaches are based on 

the quantile mapping method: 1) the conventional method and two new approaches, 2) the non-informative 

Bayesian (NIB) method and 3) the informative Bayesian (IB) method. In this study, we aim to quantify 

distributional parametric uncertainty and show some plausible range of precipitation after correcting for the 

bias of RCM precipitation. The proposed methodology is applied to three catchments located in the southwest 

of England. One emission scenario (A1B) and one-member (Q0) among 11 members of the HadRM3 model 

output driven by the GCM HadCM3 (Murphy et al., 2009) are used for the analysis because the purpose of 

this study is not to prove the two proposed bias correction methods (NIB and IB methods) or to determine 

which method is the best among the three approaches. The aim is mainly to introduce a new concept, the logic 

underlying uncertainty based bias correction and how this concept can be extended to conventional 

approaches. Hence, we believe three cases are sufficient. 

 

2. Data and Weather Generator 

Three catchments in the southwest of England are used in this study. The catchments have varying rainfall 

regimes (i.e., low, medium, and high rainfall) and are representative of the range of rainfall distributions in 
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this region. The Avon River at Melksham (665.6 km2) has low rainfall (797 mm/year), the Exe River at 

Thorverton (606km2) has medium rainfall (1260 mm/year), and the Tamar River at Gunnislake (916.9 km2) 

has high rainfall (1751 mm/year). Daily time series of the observed precipitation data are obtained from the 

UK Met Office. For the model output, we have obtained the HadRM3 Perturbed Physics Experiment Dataset 

(HadRM3-PPE-UK, resolution 25×25km), which provides time series data from 1950 to 2100. Among the 

data, only one ensemble member is used in the analysis. The UKCP09 Weather Generator (Jones et al., 2009) 

(WG) data is used for the prior distribution (Gamma distribution). The WG generates statistically plausible 

time series of nine climate variables (i.e., precipitation, temperature, vapor pressure, wind, sunshine, potential 

evapotranspiration, diffuse radiation and direct radiation) at a 5km resolution. According to the official UK 

government guidelines on climate change, the UKCP09 WG is trained using the 5 km daily-observed baseline 

for 1961–1995. This means that the WG model baseline is fitted to the 1961–1995 historical observations. The 

WG data are the officially approved data for climate change studies in the UK. Precipitation is generated 

using the Neyman-Scott Rectangular Processes (NSRP) model (Cowpertwait et al., 1996; Jones et al., 2009), 

and other variables are then simulated given the simulated precipitation. The NSRP model is a clustered point 

process model comprised of clusters and rectangular impulse models for rainfall occurrence and amount 

(Onof et al., 2000). The NSRP model describes storm origins, durations and the intensity of each rain cell as a 

set of random variables. The more detailed structure of the NSRP model is described as follows: First, storm 

origins are represented by a Poisson distribution with parameter 𝛂 relating to the arrival times of the storms; 

Second, the storm origin randomly generates numbers 𝛎 of rain cells departing from the storm origin at time 

intervals that are simulated by an exponential distribution with parameter 𝛃; Third, the durations of the rain 

cells are generated by an exponential distribution with parameter 𝛄; Fourth, the intensities of the rain cells are 

again simulated by exponential distributions with parameter 𝛅; Finally, rainfall intensity is calculated by 

summing the intensity of each rain cell. A schematic representation of the NSRP model is shown in Figure 1. 

[Insert Figure 1] 

The parameters of the NSRP model are estimated separately for each month to better characterize intra-annual 

rainfall variability. Expected values of rainfall statistics, such as the mean rainfall amount, the proportion of 

dry days, the variance and skewness of daily rainfall amounts, and the lag-1 autocorrelation (Cowpertwait et 
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al., 2002), are analytically derived with respect to the five parameters of the NSRP model. These parameters 

are as follows: (1) the average waiting time between subsequent storm origins; (2) the average waiting time of 

the rain cells after the storm origin; (3) the average cell duration; (4) the average number of cells per storm; 

and (5) the average cell intensity. These expected parameter values are then used to optimize a set of 

parameters by minimizing an objective function using an optimization algorithm. The required rainfall 

statistics for UKCP09 are estimated based on a gridded rainfall dataset at 5 × 5 km resolution compiled by 

Perry and Hollis (2005a, b) that covers the UK for the period 1961–1990.  

 

3. Methodology 

3.1 Bias correction methods 

Numerous studies have assessed the impacts of climate change on water resources using climate variables 

from global climate models (GCMs) and water resources models (Fung et al., 2011). However, because of the 

relatively low spatial resolution (100-250km) of GCMs, regional climate models (RCMs) are widely used for 

regional impact studies at catchment scales (25-50km) climate variables (Fowler et al., 2007; Qin et al., 2007). 

Although RCMs are able to simulate local climate at finer resolutions, outputs from RCMs cannot be used as 

direct input data for hydrological models due to systematic errors and require post processing of the model 

outputs to remove biases (Christensen et al., 2008; Hansen et al., 2006; Sharma et al., 2007). Typical 

systematic model errors of RCMs include errors in estimation (over or under) of climate variables, incorrect 

estimates of seasonal variations of precipitation (Christensen et al., 2008; Terink et al., 2009; Teutschbein and 

Seibert, 2010), and simulations of more wet days of low intensity rainfall (drizzle effect) than the actually 

observed (Ines and Hansen, 2006). 

Two types of statistical approaches, bias correction and stochastic downscaling methods, have been widely 

used to alleviate the limitations of the current climate models (i.e., GCM and RCM). A main objective of the 

bias correction method (e.g., quantile mapping) is to provide a set of rescaled variables by removing the 

effects of systematic errors in climate model outputs. The stochastic downscaling method is used to provide 

series of synthetic weather variables for future periods based on parametric (or nonparametric) relations 

identified between the observed target variables and daily climatic variables (e.g., precipitation, temperature, 
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sea level pressure, and geopotential height). The model is parameterized using the observed data, and 

produces plausible scenarios using future-factored climate variables informed by global climate models. 

Several recent studies of bias correction methods have used the methods from simple linear scaling to 

sophisticated quantile mapping (Chen et al., 2011a; Chen et al., 2011b; Johnson and Sharma, 2011; Piani et al., 

2010; Teutschbein and Seibert, 2012). Teutschbein and Seibert (2012) conducted a statistical evaluation of 

four bias correction procedures for precipitation: 1) linear scaling (Lenderink et al., 2007), 2) local intensity 

scaling (Schmidli et al., 2006), 3) power transformation (Leander and Buishand, 2007; Leander et al., 2008), 

and 4) a distribution mapping method (Block et al., 2009; Déqué et al., 2007; Johnson and Sharma, 2011; 

Piani et al., 2010; Sun et al., 2011). The linear scaling approach corrects the mean values based on differences 

between the observed and model data. It considers bias in the mean, using a correction factor based on the 

ratio of the long-term mean observed and modelled data. Local intensity scaling is an advanced method that 

accounts not only for the bias in the mean but also wet day frequencies and wet day intensities. Power 

transformation adjusts the mean as well as the variance of precipitation time series. Distribution mapping is 

conducted to adjust the distributions of model outputs to those of the observed data using a transfer function. 

The results of the bias correction methods show improvements over the raw RCM precipitation data and 

distribution mapping was found to be the best correction procedure. 

 

3.2 Quantile mapping method 

Bias correction was initially proposed for calibrating seasonal GCM variables (e.g., precipitation and 

temperature) and extended to the daily time scale. Each month is usually processed independently from the 

others, in order to correct seasonal phase errors, after modifying wet-day frequencies of the RCM simulated 

precipitation according to the wet-day observed frequencies by applying a cut-off threshold. Usually the 

simulated precipitation values from climate models overestimate the number of days with low precipitation 

compared with the observed precipitation. The general process of quantile mapping is as follows. First, a cut-

off threshold is used to remove low precipitation values from the model output in order to adjust the wet-day 

frequency of the simulated precipitation according to the observed values before applying the quantile 

mapping method; Second, Gamma distribution functions are built monthly for both the observed and RCM 

precipitations from 1961 to 1990. The Gamma distribution is the same for each month for all years, but differs 
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between months. The RCM precipitation is found in the Gamma CDF and the corresponding cumulative 

probability drawn from the observed Gamma CDF; Third, the value of precipitation with the same cumulative 

probability is derived from the observed Gamma CDF. This value is the bias corrected value of the RCM 

precipitation. The equation can be expressed as follows: 

 

𝑋𝑐𝑜𝑟 =  𝐹−1 [𝐹(𝑋𝑚𝑜𝑑𝑒𝑙  ;  𝛼𝑚𝑜𝑑𝑒𝑙  𝛽𝑚𝑜𝑑𝑒𝑙) ; 𝛼𝑜𝑏𝑠 𝛽𝑜𝑏𝑠]     (1) 

 

where, F is Gamma CDF, F-1 is its inverse function, 𝑋𝑐𝑜𝑟is the bias corrected model output in the baseline 

period, α and β are the shape and scale parameters of the Gamma distribution, respectively. The subscripts 

model and obs indicate the parameters from the RCM and observed precipitation. 

Figure 2 represents a schematic concept of the conventional bias correction method based on quantile 

mapping (QM). The transfer function for bias correction is built for the distribution of the RCM simulations to 

match the CDF of the observations for the same period (Figure 2(a)). This can also be represented in terms of 

parameters of the PDF. As illustrated in Figure 2(b), a set of parameters for climate simulations are shifted to 

those of the data observed through the QM. 

[Insert Figure 2] 

 
3.3 Proposed bias correction method 

3.3.1 Basic concept 

A problem with the conventional bias correction method is that the statistical properties of the RCM 

precipitation are matched to those of the sample data from the underlying distribution of the observed data. In 

fact, these observations can be regarded as only one case of many possible realizations due to internal climate 

variability. Internal climate variability represents natural fluctuations that occur without any external forcing 

to the climate system. Such variability occurs naturally in populations across time and space and has no 

deterministic patterns (Hayes, 2011). We propose a method that considers epistemic uncertainty and internal 

climate variability due to distributional parametric uncertainty in the bias correction process. The epistemic 

uncertainty is due to incomplete knowledge about the structure of a system, and the distributional parametric 

uncertainty by the limited amounts of hydrologic data used to estimate each set of parameters. 

Figure 3 illustrates the concept of uncertainty analysis of the observations. Suppose we know the population, 

i.e., the underlying distribution of parameters estimated from the observed precipitation (black line). Then, the 
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parameter representing 30 years of the observed precipitation for the baseline period (1961-1990), 𝛼𝑜𝑏𝑠 , 

which is only one case of many possible realizations, may be located at any suitable place in this population 

distribution. The uncertainty of the parameter, 𝛼𝑜𝑏𝑠, can be quantified by estimating the likelihood (black 

dashed line). Likewise there may be another possible realization, 𝛼1, which is equally likely to happen based 

on the population distribution. Therefore, using only one set of 30 years of the observation data would result 

in uncertainty while, if another data source (𝛼1) is available, we hypothesize that the distributional parametric 

uncertainty underlying the observations can be reduced by combining the two data sources. The WG data can 

be regarded as true realizations since they are calibrated based on the historical data, hence, it is possible to 

consider that the distribution of the WG parameter (𝛼𝑊𝐺) is derived from 𝛼1. If the mean and variance of 𝛼𝑊𝐺 

are similar to those of 𝛼𝑜𝑏𝑠, it is most likely that the WG data are calibrated based on the same historical 

observations. In this case, the WG data could provide the duplicate information for estimating the true 

distribution. On the other hand, if the distributions of 𝛼𝑊𝐺 and 𝛼𝑜𝑏𝑠 are different, then the WG data could 

have been derived from independent (or partially independent) observation data, which may assist in 

estimating the population. The Bayesian approach is used to combine different data sources, the distributions 

of 𝛼𝑜𝑏𝑠 and 𝛼𝑊𝐺. The likelihood is calculated from the observations and the WG is used as prior information 

to estimate the posterior distribution, which is assumed to represent the uncertainty of the true distribution.  

[Insert Figure 3] 

 

This concept of data uncertainty is applied to the bias correction procedure in this study. The idea is that both 

RCM and observation precipitation have distributional parametric uncertainties, and such uncertainties can be 

quantified as illustrated in Figure 4(a). In contrast with the conventional method, this results in a certain 

distribution of the bias corrected model outputs, instead of only one value. The group of parameters, which 

represents uncertainty in the parameters of statistical distributions underlying the observations/models, are 

used to build transfer functions (Figure 4(b)). In other words, the distributions of RCM parameters are moved 

forward to those observed after the bias correction (Figure 4(c)).  

[Insert Figure 4] 
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3.3.2 Quantifying the distributional parametric uncertainty underlying observations/models 

We have used two different methods to quantify the distributional parametric uncertainty underlying the data. 

First, the NIB method quantifies the uncertainty in terms of the likelihood of the data. The reason that we refer 

to this as a NIB method is because a Bayesian approach using a non-informative prior (i.e., uniform prior) 

produces the same posterior as the likelihood. Second, an IB approach is applied using the likelihood of the 

data and prior information. To quantify the uncertainty, the NIB method is only used for the model output 

(Figure 5(b)) and both NIB (Figure 5(c)) and IB (Figure 5(d)) methods are applied for the observations. A 

graphical representation of this quantification is illustrated in Figure 5. 

[Insert Figure 5] 

 

3.3.3 Two proposed bias correction methods 

Since the uncertainty can be quantified in two ways for the observations, there are two different approaches of 

applying the quantile mapping method. The first proposed method is a NIB method that intends to rectify the 

CDFs of the simulated data using those of the observed data, consisting of 1,000 sets of parameters of the 

Gamma distribution randomly sampled from the distribution of the likelihood for both the RCM (Figure 5(b)) 

and observed precipitation (Figure 5(c)), i.e., 1,000 transfer functions are evaluated for bias correction. In 

other words, the distributions of the RCM parameters (Figure 5(b)) are matched to those of the observations 

(Figure 5(c)). The second proposed method is an IB approach that aims to match the CDFs of the RCM 

precipitation, which derives parameters from the distribution of the likelihood using those of the observations, 

whose parameters are derived from posterior distributions based on the integration of the likelihood of the 

observations and the prior (i.e., estimated from WG). Likewise, 1,000 sets of the parameters of the Gamma 

distribution are randomly sampled from each distribution. In other words, the distributions of RCM 

parameters (Figure 5(b)) are matched to those of the observations (Figure 5(d)). We apply these 1,000 transfer 

functions to correct future precipitation projections. The role of time dependent bias should be considered, but 

here we assume the bias to be stationary, i.e., that the functional relationship in terms of the probability 

distribution under current conditions will still be valid under future climate conditions. The NIB and the IB 

approaches can be written as Equations (2) and (3), respectively.   
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𝑋𝑐𝑜𝑟,𝑖
𝑁 =  𝐹−1 [𝐹(𝑋𝑚𝑜𝑑𝑒𝑙  ; 𝛼𝑚𝑜𝑑𝑒𝑙,𝑖

𝑁  𝛽𝑚𝑜𝑑𝑒𝑙,𝑖
𝑁 ) ; 𝛼𝑜𝑏𝑠,𝑖

𝑁  𝛽𝑜𝑏𝑠,𝑖
𝑁 ]    (𝑖 = 1, … , 1,000)    (2) 

𝑋𝑐𝑜𝑟,𝑖
𝐵 =  𝐹−1 [𝐹(𝑋𝑚𝑜𝑑𝑒𝑙  ; 𝛼𝑚𝑜𝑑𝑒𝑙,𝑖

𝑁  𝛽𝑚𝑜𝑑𝑒𝑙,𝑖
𝑁 ) ;  𝛼𝑜𝑏𝑠,𝑖

𝐵  𝛽𝑜𝑏𝑠,𝑖
𝐵 ]    (𝑖 = 1, … , 1,000)    (3) 

 

where, F is Gamma CDF, F-1 is its inverse Gamma function, 𝑋𝑐𝑜𝑟 is the bias corrected model output in the 

baseline period, α and β are shape and scale parameters of the Gamma distribution, respectively, and i 

indicates the number of samples. The subscripts model and obs indicate the parameters from the RCM and 

observed precipitation, and the superscripts N and B indicate the parameters from the NIB method and the IB 

approach, respectively. 

A Bayesian-based bias correction method is proposed to accommodate the uncertainty in the parameters of 

statistical distributions underlying the observations. An objective of the Bayesian methods is to compute the 

posterior distributions of the desired variables, in this case the parameters of the daily precipitation 

distribution. The posterior distribution of the parameter vector 𝛉, is 𝑝(𝜽|x), given by the Bayes Theorem as 

follows: 
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where   is the parameter vector of the distribution to be fitted,   is the space parameter, )( xp  is the 

likelihood function, x  is the observation vector, and )(p  is the prior distribution. Here, we present a method 

for incorporating the information from the WG into the updated estimates of parameters for the probability 

distribution used to represent daily precipitation. Using the Gamma distribution, the distribution of the daily 

precipitation )(tR  can be modelled as follows: 

),(~)( GammatR          (5) 

),(~   Gamma          (6) 

),(~   Gamma          (7) 

 

The Bayesian approach allows us to estimate the parameters, and parameterization of each parameter (i.e., α 

and β) is more common in Bayesian statistics than in other methods. A prior distribution must be assigned to 

reflect our prior beliefs regarding the parameters, and the parameters are then estimated by sampling from 

these distributions to maximize the likelihood under the model (Kwon et al., 2008), in this case the Gamma 

distribution.  Here, we assign the Gamma distributions for α and β that reflect our prior beliefs regarding their 
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values. If the posterior distribution is in the same family as the prior distribution, the prior is regarded as a 

conjugate prior. Hence, the use of the conjugate prior ensures that the posterior distribution is the same as the 

assumed likelihood function. The Gamma distribution is the conjugate prior distribution for many 

distributions such as the Poisson, exponential, Pareto, and Gamma, with known shape parameters. However, a 

conjugate prior for the Gamma distribution with unknown shape and scale parameters is not directly available, 

and therefore in this study we used the Gamma distributions for parameters of interest. The Gamma 

distribution is most appropriate for use as the prior distribution of the parameters based on a goodness-of-fit 

test using the parameters sampled from Monte Carlo simulations. The Gamma distribution is also a good 

choice to ensure that both parameters are positive real numbers. 

 

3.4 Step by step procedure of the proposed bias correction method 

The thirty-year daily rainfall distribution is assumed to follow a two-parameter Gamma distribution, since it is 

fitted better to such a distribution than to any other distributions. A two-dimensional grid likelihood profile of 

a two parameter Gamma distribution (i.e., shape and scale parameters) is applied to estimate the likelihood. 

The likelihood function is evaluated at every point on the grid, and then uncertainties are derived given the 

assumed parameters. For the IB approach, the WG is used as a prior distribution since the WG is created from 

a different set of rain gauges, which can be assumed to be an alternative to the observations used in this study. 

For prior distributions, 1,000 sets of precipitations from 1961 to 1990 are generated. Combining these priors 

from the WG and likelihoods from the observations should result in better estimates of the parameters of 

interest.  

Figure 6 illustrates the step-by-step procedure of the proposed bias correction method. First, the wet-day 

frequencies of RCM precipitation and the observations are matched (Step 1). Next, the parameter uncertainties 

of the transfer functions are quantified for the two different data sets. The distributions of the shape (α) and 

scale (β) parameters of the Gamma distribution represent distributional parametric uncertainty underlying 

observations/models (Step 2). Note that the posterior parameter distributions of the RCM and observations in 

the NIB method (Step 2 (1) and (2) in Figure 6) are the same as the likelihoods, because uniform priors are 

used. In other words, the parameters are randomly sampled from the data without considering the prior, which 

is considered to be additional information. Then, the parameters are randomly sampled from these posterior 
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distributions, and these parameters are further used to build transfer functions for quantile mapping (Step 3). 

Finally, the quantile mapping method is applied (Step 4). The NIB method matches the distributions of the 

RCM parameters (Step 2(1)) to those of the observations (Step 2(2)), and the IB approach matches the 

distributions of RCM parameters (Step 2(1)) to those of the observations (Step 2(3)). 

[Insert Figure 6] 

4. Results  

4.1 Estimation of posterior distribution for the parameter 

Again, note that we regard the observations as a single case among many possible realizations, rather than as a 

sample drawn from the entire population of a certain distribution, due to uncertainties in the parameters of 

statistical distributions underlying the observations. We performed an experimental study to further 

investigate the roles of the WG, which can be partially independent from the observations, as a source of prior 

information in order to update it to the posterior about unknown parameters. Our main assumption is that the 

WG is capable of generating statistically plausible rainfall sequences. Figure 7 represents the distributional 

parametric uncertainty underlying the observations/models of precipitation. Here, only January precipitation is 

illustrated to explain the concept. The distributional parametric uncertainty of the RCM (blue dots) is 

quantified by estimating the likelihood of the data for the Gamma distribution with the given parameters. The 

uncertainty estimates associated with the parameters are quantified in two different ways: the NIB method 

(black dots in Figure 7(a)) using the likelihood of the data and the IB approach (red dots in Figure 7(b)) using 

both the likelihood of the observations and the prior information from the WG. It is apparent that the 

parameter spaces of the RCM precipitation are quite different from both posteriors (NIB method and IB 

approach), which indicates that bias correction is needed. Therefore, the transfer functions for the NIB method 

are built by matching the ranges of blue dots to black dots and the transfer functions for the IB approach are 

built by matching the ranges of blue dots to red dots. 

[Insert Figure 7] 

 

The uncertainty is illustrated in terms of the posterior distribution of the parameters in Figure 8. As noted in 

Figure 7, the posterior distributions of the observed data are estimated by the NIB method (black lines in 
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Figure 8) and the IB approach (red lines in Figure 8). The distributions of the parameters are assumed to 

follow a Gamma distribution. 

[Insert Figure 8] 

 

In Figure 9 the quantified uncertainty is represented by boxplots. Monthly mean precipitation for the time 

period from 1961 to 1990 is compared for the NIB and IB methods. As expected, for all the months, the IB 

approach has a narrower range of uncertainty (i.e., the interquartile range of the boxplot) than the NIB method, 

by 28% to 43%. The other two catchments show similar results. This indicates that the prior distribution 

derived from the WG helps reducing uncertainty associated with the parameters. 

[Insert Figure 9] 

 

4.2 Comparisons of bias corrected precipitation 

Next, we performed monthly quantile mapping bias correction while considering the uncertainties of the data. 

Figure 10 shows that after the bias correction, the parameters for January RCM (blue dots) precipitation have 

moved to those of the observations (black dots and red dots). Figure 11 represents the same results in terms of 

the posterior distribution associated with the parameters.  

[Insert Figure 10] 

[Insert Figure 11] 

 

In Figure 12, monthly mean precipitation is illustrated for the time period from 1961 to 1990. The 

observations, uncorrected RCM, and corrected RCM precipitation (both NIB and IB approaches) are 

compared for the baseline period. Both NIB- and IB-based bias correction methods show plausible uncertainty 

ranges, and the differences between uncertainty ranges according to NIB and IB methods are illustrated in 

Figure 13. 

[Insert Figure 12] 

 

Figure 13 represents the 5th to 95th percentile differences between the NIB and IB methods (i.e., NIB-IB) 

after the bias correction for the three catchments, so that a positive value indicates that the NIB has greater 
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uncertainty than the IB. All catchments indicate that the uncertainty band of the bias corrected model output is 

narrower in the IB approach than the NIB method, by approximately 25% to 45%. 

[Insert Figure 13] 

 

Figure 14 shows a time series of the bias corrected precipitation in December when the IB approach is applied 

to considering the uncertainty for the baseline period and the future. The range of precipitation estimates over 

time is even wider when we consider the uncertainty in bias correction compared with the conventional 

methods. 

[Insert Figure 14] 

 

4.3 Cross validation  

To evaluate the IB method, we performed two fold cross-validation for the IB approach. Since there are no 

direct relationships between the individual years of the observations and model outputs (e.g., RCM data in 

1961 have no direct link with the observations in 1961), only the 30-year monthly mean precipitations in both 

observations and bias-corrected outputs were estimated and compared. The first half (1961-1975) of the data 

was used for training, i.e., to build the transfer functions for bias correction, and we then applied these 

functions to the second half (1976-1990) of the data. Next, the second half of the data was used for training 

and then we applied the derived functions to the rest of the data. Finally, two 15-year validated data were 

grouped into a whole set of 30 years to be evaluated with 30 years of the observation data. As presented in 

Figure 15, all the observed data points fall entirely inside the credible uncertainty bounds, which indicates that 

the performance of the IB scheme is better than that of the existing approaches.  

[Insert Figure 15] 

 

5. Discussion and Conclusions 

The distributional parametric uncertainty involved in the observations and climate model data has yet to be 

considered for bias correction of the RCM precipitation, which will accumulate the total uncertainty in terms 

of climate impacts. In addition, from the perspective of policy makers, not only the magnitude of future 



16 
 

uncertainties but also economic, political, and cultural aspects should be considered to design an optimum 

strategy of mitigation and adaptation (Dessai et al., 2009).  

In this study, we investigated three bias correction methods. First, the conventional bias correction method is 

proved to be simple to apply but to lack the ability to perform uncertainty estimation; Second, the NIB method 

provides uncertainty bounds that are more realistic than the conventional method, but the uncertainty bounds 

are much larger than those of the IB approach; Third, the IB approach is able to integrate additional 

information (e.g., the prior information from the WG), hence, its probabilistic estimates of uncertainty should 

be more realistic than those of the other two approaches. The results of this study might be different under 

different climatic conditions and for different application purposes. This study is a proof of concept and is a 

preliminary attempt to address distributional parametric uncertainty underlying observations in climate change 

impact studies.  

It is important to note that 30 years of the observation data represent just one realization of many possibilities, 

and that distributional parametric uncertainties underlying the observations/models need to be considered 

when designing and conducting studies of climate change impact assessments. To overcome this shortcoming, 

the WG is applied in a case study that covers a wider range of realizations. Therefore, there are three options 

for engineers to choose from: 1) WG data, which are the officially approved data and the default data in the 

UK; 2) data locally collected by individuals; and 3) integrated data using the WG as a prior and locally 

collected data as the likelihood. The question is which method is the most reliable. And if one is tasked with 

designing a new reservoir, which data should be used? If the client is someone else, we choose Option 1 

because it is official, eliminating worries regarding being sued in the future if things go wrong. However, if 

we design the reservoir for ourselves (i.e., our own money is to be used in building the reservoir), we use 

Option 2 because we trust our collected data more than the data from the WG. Since both Option 1 and Option 

2 are likely to be used by some people, the integration of both data sets may be more trustworthy. One of the 

purposes of this paper is to raise this important question and attract the attention of the community to discuss 

ways to deal with the paradox in which the choice of data depends on the clients, and why a Bayesian 

approach is unlikely to be accepted under Option 1 or Option 2. 

We hope that whether the uncertainty band is reduced or increased, the IB approach is able to provide a 

method for quantifying uncertainty in bias correction schemes. However, there are some important issues that 
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remain unsolved by this study.  First, the issue of independence of the prior information from the WG is 

important and needs to be solved. We attempted to determine the differences between the stations used to train 

the WG and the stations used for the observations, but could not due to the lack of detailed information. In 

addition, even though the WG is trained using different observations, these station data are likely correlated  

with the observations used for the non-informative method, since all observations are based on the same 

sample realization of actual internal climate variability in 1961-1990, and since precipitation is correlated in 

space. Thus, the assumption of complete prior independence is not satisfied and further research is needed to 

potentially alleviate this issue. Nevertheless, unless those two sources of the data are completely correlated, 

they still provide complementary information from each other;  Second, further research about the impacts of 

uncertainty on climate impact assessments is needed, since uncertainties may increase due to their propagation 

through every stage of the assessment; Third, only one member is used in this study to introduce the new 

concept, the logic of analysis for uncertainty based bias correction methods and how this concept can be 

applied. However, HadRM3 has 11 members and there are questions regarding how to consider the spread of 

this ensemble for the proposed bias correction method which represents another potential research area. 

Without retaining the variance of these members after the bias correction, there are no benefits associated with 

the ensemble data.  

We hope this paper will stimulate more research activities regarding how to validate and evaluate the three 

methods we have outlined, and how to reflect uncertainties in planning mitigation and adaptation strategies.  
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Figure 1. A schematic representation of the NSRP model. The red circle indicates the location of the storm 

origin and the star represents a rain cell from a report by Jones et al (2010). 

 

 

 

 

 

 

 

 
Figure 2. A schematic representation of the conventional bias correction method using quantile mapping. (a) 

Matching the quantile of the RCM to that of the observations; (b) Matching the shape and scale parameters of 

RCM to those of the observations. 
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Figure 3. A schematic representation of uncertainty analysis of the observation data. 
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Figure 4. A schematic representation of the proposed bias correction method. (a) Matching the quantile of 

RCM to that of observations; (b) Matching the parameter spaces of shape and scale parameters of RCM to 

those of the observed data; (c) Matching the PDF of RCM parameters to those of the observations. 
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Figure 5. A schematic representation quantifying the uncertainty of both observations and RCM. (a) Matching 

the spaces of shape and scale parameters of RCM to those of the observations; (b) Distributions of shape (or 

scale) parameters from the likelihood of the RCM data; (c) Distributions of shape (or scale) parameters from 

the likelihood of the observation data; (d) Posterior distributions of shape (or scale) parameters derived by 

multiplying the prior and likelihood. 
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Figure 6. Illustration of the bias correction method for considering uncertainties due to the sampling error.  
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Figure 7. Posterior distribution of Gamma parameters for the observed and RCM January precipitation. (a) 

Uncertainty of the observations (black dots) is quantified by the Non-IB method (i.e., using the likelihood of 

observation); (b) Uncertainty of the observations (red dots) is quantified by the IB method (i.e., using both the 

likelihood of observations and prior information from the WG). 

 

 
Figure 8. Uncertainties of the observed and the RCM January precipitation represented in terms of posterior 

distributions of the parameters. Uncertainty of the observation is quantified by estimating the likelihood of 

observation (black line, NIB method) or by estimating the likelihood of the observation and prior information 

from the WG (red line, IB method). 
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Figure 9. Comparisons of the uncertainty ranges of the observations between the NIB method (left panel) and 

IB method (right panel) for the Thorverton catchment. The ‘New Observation’ on the right panel is the 

monthly mean value of the posterior distribution. The box plots show the median (horizontal line), 

interquartile range (box), and range with maximum 1.5 interquartile range (whiskers). 

 

 

 

Figure 10. Uncertainties of the observed and RCM January precipitation after bias correction represented in 

terms of parameters. (a) Uncertainty of the observation (black dots) is quantified by estimating the likelihood 

of the observation (NIB method); (b) Uncertainty of the observation (red dots) is quantified by estimating the 

posterior (IB method). 
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Figure 11. Posterior distributions of the observed and RCM January precipitation after bias correction 

represented in terms of distributions of parameters.  

 

 

Figure 12. Comparisons of the uncertainty of the bias corrected data between the NIB method (left panel) and 

the IB approach (right panel). The box plots show the median (horizontal line), interquartile range (box), and 

range with maximum 1.5 interquartile range (whiskers). 
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Figure 13. The 5th to 95th percentile difference between the NIB and IB approaches after the bias correction for 

the three catchments. 

 

 

Figure 14. A time series of the bias corrected precipitation in December for the baseline and future periods. 

Solid red lines indicate 5%, median, and 95% of observed precipitation, respectively. Solid and dotted blue 

lines indicate the median values from the posterior distribution of the bias corrected precipitation, and 

horizontal dotted black lines show the mean precipitation in the baseline and the future, respectively. 
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Figure 15. Two-fold cross validation of the IB approach. 

 

 


