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Abstract   1 

The rainfall frequency analysis has been routinely adopted for the estimation of design rainfall for a 2 

given specific return period. The annual maximum rainfall data are generally used for the frequency 3 

analysis in practice, but the parameters of the probability distribution are estimated from the limited 4 

data that are often available since the 1970s in many regions including South Korea. As an alternative, 5 

this study aims to utilize a century-long ERA-20c daily precipitation data, which have been provided 6 

by the European Centre for Medium-Range Weather Forecasts (ECMWF). To reduce the systematic 7 

errors in the reanalysis data, we introduce a quantile delta mapping method using a composite Gamma-8 

Pareto distribution (QDM-GP) that can better represent temporal trends and extreme events, compared 9 

with the stationary quantile mapping (SQM). We also evaluate the degree of uncertainty reduction in 10 

the estimation of design rainfall with the use of the bias corrected ERA-20c within a Bayesian 11 

modeling framework. Finally, the bias-corrected data are applied to explore the spatio-temporal change 12 

of design rainfall in South Korea for the 20th century. To investigate changes in design rainfall under 13 

the nonstationary assumption, this study estimates the design rainfall using the data from three different 14 

periods (i.e. for the period of 1900-1936, 1937-1973, and 1974-2010). It is found that the QDM can 15 

substantially reduce the bias in annual maximum rainfall (AMR). The uncertainty ranges of design 16 

rainfall using the bias corrected ERA-20c are generally within those in the observed, suggesting the 17 

use of the bias corrected reanalysis data can reduce uncertainties in design rainfall by increasing the 18 

sample size. Furthermore, we have explored the role of the bias corrected rainfall for uncertainty 19 

reduction in design rainfall via three different experiments in the context of prior information within a 20 

Bayesian framework. In the experimental study, we conclude that the uncertainty reduction in the 21 

design rainfall can be mainly attributed to the use of prior distribution for the shape parameter, 22 

informed by the long-term reanalysis data. Moreover, a significant spatio-temporal change in design 23 

rainfall is observed over the entire South Korea. The significant change in design rainfall is mainly 24 

attributed to the recent increase in the rainfall intensity, leading to a potential increase in the flood risk 25 

in view of the present in most areas.  26 
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1. Introduction 1 

The rainfall frequency analysis is routinely adopted for the estimation of the design rainfall with a 2 

return period, which is an essential part in a water-related planning in a certain area. The extreme value 3 

distributions such as the generalized extreme value (GEV) or Gumbel distribution are commonly 4 

applied to the annual maximum rainfall series (AMRs). However, there exist significant uncertainties 5 

in the estimation of design rainfall due to sampling error, which is related to the limited AMRs and the 6 

use of an improper distribution (Huard et al., 2010). Moreover, it has been acknowledged that the 7 

observed data are usually found to be insufficient for the spatial analysis of extreme value in ungauged 8 

catchment. In this context, geospatial approaches could be used for an interpolation to provide 9 

hydrologic variables (or parameters) over the entire watershed. For example, reliable long-term daily 10 

precipitation data over South Korea are not readily available, and a continuous daily precipitation 11 

records over the past 40 years are available from only about 50 stations. In this setting, the estimated 12 

design rainfall for a higher return period more than the length of AMRs might be exacerbated by the 13 

sampling error. Given these circumstances, with the reliable long-term precipitation data at a fine 14 

spatial resolution, reanalysis data could be an alternative in hydrologic modeling, especially for the 15 

design rainfall estimation. 16 

Reanalysis datasets are produced by numerical models informed by advanced data assimilation 17 

techniques and they have been widely adopted in the climate change studies (Dee et al., 2011; Zhang 18 

et al., 2013; Hersbach et al., 2015; Donat et al., 2016; Gao et al., 2016; Poli et al., 2016). There are 19 

several types of reanalysis datasets available, but the three century-long daily reanalysis datasets are 20 

globally available, namely, the National Oceanic and Atmospheric Administration (NOAA) 20th 21 

century reanalysis (NOAA-20cR), the European Centre for Medium-Range Weather Forecasts 22 

(ECMWF) century atmospheric model ensemble (ERA-20cm) and ECMWF 20th century assimilation 23 

surface observations only (ERA-20c), covering from 1900 to 2010 (Compo et al., 2011; Hersbach et 24 

al., 2015; Poli et al., 2016). The main differences among these datasets are the assimilation techniques 25 



 

 

and spatial resolution. Unlike ERA-20c and NOAA-20cR, ERA-20cm does not consider observations 1 

in the assimilation process so that the synoptic patterns may not be well reproduced (Hersbach et al., 2 

2015; Donat et al., 2016; Gao et al., 2016; Poli et al., 2016). It has been acknowledged that the mean 3 

climate is reasonably well reproduced in both NOAA-20cR and ERA-20c, whereas NOAA-20cR has 4 

coarser spatial resolution, 1.875°×1.9° compared to the ERA-20c which has the higher resolution, 5 

0.125°×0.125. For these reasons, we mainly used ERA-20c reanalysis data to explore changes in 6 

design rainfall over the last century.  7 

A primary concern of the use of reanalysis data for characterizing long-term climate trends is to 8 

reduce the systematic errors. Previous studies have shown that century-long reanalysis data may 9 

misrepresent long-term climatic trends or synoptic patterns, especially for the first half of twentieth 10 

century, and there exists the difference in temporal variability between century-long reanalyses and 11 

observations (Brands et al., 2012; Krueger et al., 2013; Poli et al., 2013; Befort et al., 2016; Donat et 12 

al., 2016; Kim and Han, 2018). Thus, the reanalysis data without an attempt to adjust the bias can be 13 

problematic for many hydrologic applications. There are various approaches for the bias correction 14 

from simpler method (e.g. the delta method) to more complex procedures (e.g. the quantile mapping 15 

approach, multivariate approach and multiscale approach). Among these methods, the quantile 16 

mapping (QM) approach has been applied extensively to reduce the systematic biases in the climate 17 

model outputs (Themeßl et al., 2011; Teutschbein and Seibert, 2012; Fang et al., 2015; Maraun, 2016; 18 

Maraun and Widmann, 2018).  19 

A fundamental assumption of the traditional QM approach is that the biases in the numerical 20 

modeling data are stationary for the reference period. However, recent studies have shown that climate 21 

variables including precipitation are often viewed as non-stationary. It has been well documented that 22 

there is a significant increasing trend over South Korea, especially in summer (Chang and Kwon, 2007; 23 

Choi et al., 2009; Jung et al., 2011; Cannon et al., 2015; Miao et al., 2016; Eum and Cannon, 2017; 24 

Nahar et al., 2017). Recently, the bias correction method with the consideration of nonstationarity has 25 



 

 

been proposed to better represent the nonstationarity in climate variables. Bürger et al. (2013) 1 

suggested the detrended quantile mapping (DQM) approach, removing the trends for future climate. 2 

Li et al. (2010) proposed an equidistant QM algorithm to reduce biases in the tails of the distribution 3 

of climate change scenarios. Cannon et al. (2015) proposed a quantile mapping approach for preserving 4 

trend, namely, the quantile delta mapping (QDM) approach. They confirmed that QDM is generally 5 

better in terms of reducing the uncertainty in the GCMs for the future period than DQM as well as the 6 

conventional QM. In this perspective, we adopt the QDM algorithm for the non-stationary bias 7 

correction of century-long reanalysis, especially for extreme rainfall events. The only difference from 8 

the QDM proposed by Cannon et al. (2015) is that we superimpose the delta change for the past period, 9 

not future period. For comparison purposes, the stationary QM (SQM) approach is also explored in 10 

this study.   11 

On the other hand, the use of long-term data in the hydrologic frequency analysis can substantially 12 

reduce the uncertainty of design rainfall estimation (Coles et al., 2003; Overeem et al., 2008; Huard et 13 

al., 2010; Tung and Wong, 2014; Van de Vyver, 2015). In this context, the use of the century-long 14 

reanalysis data can be used to reduce the uncertainty of design rainfall estimation in the rainfall 15 

frequency analysis. To explore reduction in the uncertainty of design rainfall, a set of parameters of 16 

probability distribution in the frequency analysis was estimated in a Bayesian framework (Reis and 17 

Stedinger, 2005; Kwon et al., 2008, 2011; Huard et al., 2010; Van de Vyver, 2015). There are several 18 

climate change studies for the historical rainfalls with the limited data to estimate the changes in 19 

rainfall intensity (Chung and Yoon, 2000; Ho et al., 2003; Chang and Kwon, 2007; Choi et al., 2009; 20 

Jung et al., 2011). Here, the uncertainty of the parameters and their reduction with the use of the ERA-21 

20c are studied for the first time, which are then evaluated by comparing the predictive posterior 22 

distribution of design rainfall.  23 

From this background, we mainly focus on investigating the following questions: 24 

(1) Can the QDM approach be more effective for reducing the errors compared with the SQM? 25 



 

 

(2) Can the use of ERA-20c be effective in reduction of uncertainty in estimating design rainfall?  1 

(3) How much has the design rainfall changed for the whole of 20th century in South Korea? 2 

To address these questions, our aims are three-folds. First, we applied two bias correction schemes, 3 

SQM and QDM with a composite distribution of a gamma and GPD as for the transfer function. Here, 4 

their comparison is performed for the century-long ERA-20c with three different periods (1900-1936, 5 

1937-1973, 1974-2010). Second, the degree of reduction in uncertainty of the design rainfall 6 

corresponded with the use of bias corrected AMRs was explored with that of the observed for the 7 

reference period 1974-2010, within the Bayesian model framework. Third, we explored the spatio-8 

temporal change in design rainfall over the last century. The data used in this study are summarized in 9 

Section 2, and the theoretical background for the methodology is then introduced in Section 3. The 10 

results and discussion are summarized in Section 4 and concluding remarks are finally provided in 11 

Section 5. 12 

 13 

2. Data  14 

 2.1 Weather Stations 15 

In South Korea, there exist hundreds of local weather stations, but the historical records for more 16 

than 40 years are available from only several stations. Subsequently, we selected 48 rain gauges, 17 

covering from 1974 to 2010, over South Korea. Among these, for the evaluation, this study used 7 18 

stations which provide a longer period of historical records: St 4. Gangneung (1912-2010), St. 5 Seoul 19 

(1910-2010), St. 6 Incheon (1910-2010), St. 17 Daegu (1912-2010), St. 18 Jeonju (1919-2010), St 21. 20 

Busan (1912-2010), and St 22. Mokpo (1910-2010). The daily precipitation data were collected and 21 

compiled from the Korea Meteorological Administration (KMA). The specific locations of weather 22 

stations used in this study are illustrated in Figure 1 and Table 1. 23 

[Insert Figure 1 and Table 1] 24 

 25 



 

 

2.2 ERA-20c daily precipitation 1 

The ERA-20c reanalysis data is modelled by the ECWMF Integrated Forecasting System (IFS), 2 

covering the period 1900 to 2010. The ERA-20c global reanalysis data was modelled by data 3 

assimilation schemes with ocean‐global atmosphere observing system, and using sea surface 4 

temperature and sea ice concentration as a set of boundary conditions. In the ERA-20c system, daily 5 

precipitation totals can be obtained as 24 hour accumulations (Poli et al., 2016). In this study, we 6 

collected the daily precipitation totals over South Korea for the period 1900-2010, via the ECMWF 7 

web server on a fine grid, 0.125°×0.125°. It should be noted that the ERA-20c reanalysis data was 8 

finally obtained as a single simulation, without providing a large ensemble with uncertainties. The grid 9 

points of ERA-20c along with the locations of weather stations used in this study are illustrated in 10 

Figure 1. Here, the nearest grid centering at the target station was extracted for the subsequent analysis. 11 

 12 

3. Methodology  13 

In this section, two main approaches introduced in this study are demonstrated. First, the QDM is 14 

presented with a primary focus on the use of composite distribution as a transfer function. Second, a 15 

Bayesian parameter estimation approach to rainfall frequency analysis is briefly provided. 16 

 17 

 3.1 Quantile Delta Mapping with a Composite Distribution  18 

QM is a commonly used method in bias correction studies. In the QM approach, the systematic 19 

biases can be efficiently removed by matching cumulative distribution function (CDF) of the modelled 20 

data into that of the observed (Teutschbein and Seibert, 2012; Rabiei and Haberlandt, 2015). The QMs 21 

for daily precipitation have involved transfer functions that are typically based on parametric and 22 

nonparametric distributions (Teutschbein and Seibert, 2012; Cannon et al., 2015; Kim et al., 2015a, 23 

2015b; Eum and Cannon, 2017). Nonparametric QM can lead to an increase of bias in the upper 24 

quantile for the extreme values, moreover, parametric QM typically using a gamma distribution also 25 



 

 

often fails to represent the extreme values (Maraun, 2016; Volosciuk et al., 2017; Maraun and 1 

Widmann, 2018). In this context, one can consider a composite distribution of combining a gamma 2 

distribution for modeling the interior part of the distribution and the tails by generalized Pareto 3 

distribution (GPD) for heavy-tailed distribution, (Vrac and Naveau, 2007; Gutjahr and Heinemann, 4 

2013; So et al., 2015; Volosciuk et al., 2017). More specifically, the composite distribution is composed 5 

by parametrically modeling the rainfall events over the upper threshold using a GPD and the events 6 

below the threshold using a gamma distribution, as follows:  7 

 𝑥𝑐𝑜𝑟 = {
𝐹𝑜,𝑔𝑎𝑚
−1 [𝐹𝑚,𝑔𝑎𝑚(𝑥𝑚)],     if  𝑥 ≤ upper threshold 

𝐹𝑜,𝐺𝑃𝐷
−1 [𝐹𝑚,𝐺𝑃𝐷(𝑥𝑚)],    if 𝑥 > upper threshold

 (1) 

Here, subscripts o and m represent the observed data and modelled data, respectively, and 𝐹𝑚,𝑔𝑎𝑚 and 8 

𝐹𝑚,𝐺𝑃𝐷 are the CDFs of the ERA-20c model for gamma and GPD. Similarly, 𝐹𝑜,𝑔𝑎𝑚
−1  and 𝐹𝑜,𝐺𝑃𝐷

−1  are 9 

the inverse (or quantile) function of CDFs of observations for gamma and GPD, respectively. The 10 

cumulative distributions for gamma distribution and GPD are defined as follows (Coles, 2001; Gutjahr 11 

and Heinemann, 2013): 12 

 𝐹(𝑥|𝛼, 𝛽) =
1

𝛽𝛼Γ(α) 
∫ 𝑡𝛼−1𝑒−𝑡/𝛽𝑑𝑡
𝑥

0

;   𝑥 ≥ 0;  𝛼, 𝛽 > 0 (2) 

 𝐹(𝑥) =  𝑃𝑟(𝑋 − 𝑢 ≤ 𝑥 |𝑋 > 𝑢 ) =  

{
 
 

 
 
1 − (1 + 

𝜉𝑥

𝜃
)
−
1
𝜉
    𝑓𝑜𝑟  ξ ≠ 0 

1 − exp (−
𝑥

𝜃
)        𝑓𝑜𝑟  ξ = 0

 (3) 

where, 𝛼 and 𝛽 are the shape and scale parameters of the gamma distribution in Equation (2), and 13 

u, 𝜉, and 𝜃 = 𝜎 + 𝜉(𝑢 − 𝜇) represent the upper threshold, shape parameter and the reparametrized 14 

scale parameter of the GPD in Equation (3), respectively. Note that the parameters of gamma 15 

distribution are estimated on a monthly basis, whereas the parameters of GPD are estimated using the 16 

entire peak-over-thresholds for all months. For the upper threshold in Equation 3, we explored three 17 

thresholds, the 90th, 95th and 99th percentiles, for both the modelled and observed data, respectively. 18 

Among the thresholds, both 95th and 99th percentiles for the observation and ERA-20c give fairly good 19 

results, and two thresholds are used in the subsequent analysis. More detailed results on the threshold 20 



 

 

selection were provided in Appendix A.  1 

Basically, the conventional QM algorithm, SQM, assumes that the degree of bias in the climate model 2 

are stationary for the simulation period (Teutschbein and Seibert, 2012; Cannon et al., 2015), and the 3 

QM algorithm is specifically designed to reduce bias in the climate model in the probability space. In 4 

this approach, CDFs of the historical records are constructed for the reference period, and CDFs of 5 

climate model outputs for the entire projection period are then mapped to that of observed as follows: 6 

𝑥̂𝑚,𝑝 = 𝐹𝑜,𝑟
−1[𝐹𝑚,𝑟{𝑥𝑚,𝑝(𝑡)}]   (4) 

Here, 𝐹𝑜,𝑟 and 𝐹𝑚,r are the CDFs of the observed and modelled for the reference period, denoted 7 

by r, respectively, while 𝑥̂𝑥,𝑝(𝑡) and 𝑥𝑚.𝑝 are the bias-corrected and uncorrected (or modelled) data 8 

at time t over the simulation period, denoted by p. In this study, historical records from 1974 to 2010 9 

in 48 stations and their corresponding values in the climate model were used as reference data, while 10 

the period from 1900 to 2010 was considered as the simulation period. To begin with, we corrected the 11 

wet day frequency error, namely “drizzled effect”, from the ERA-20c reanalysis data. It has been well 12 

acknowledged that the wet-day frequency of the modelled daily precipitation data from climate models 13 

is typically overestimated. For this reason, a cut-off threshold (TH) has been commonly employed in 14 

the bias correction scheme for modelled daily precipitation data (Schmidli et al., 2006; Piani et al., 15 

2010; Themeßl et al., 2011; Kim et al., 2015a, 2015b; Rabiei and Haberlandt, 2015; Nyunt et al., 2016; 16 

Volosciuk et al., 2017). In this study, we set the wet-day frequency in the modelled precipitation equal 17 

to that of the observed. More specifically, we divided the whole period into three different periods with 18 

the same length (1900-1936, 1937-1973, 1974-2010) because climate is usually defined with 30 or 19 

more years, and the wet-day frequency of the modelled precipitation for each time period was set equal 20 

to that of the observed for the reference period (1974-2010). After adjusting for the wet-day frequency, 21 

a composite distribution is used to construct the CDFs (i.e. Equation 4). The SQM approaches with the 22 

95th and 99th thresholds were named as SQM95 and SQM99, respectively. For the SQM, the bias 23 

corrected AMRs can be exceptionally higher than the range of the AMRs of the observed in the 24 



 

 

reference period due to misrepresentation of the upper tail of the distribution. To reduce the over-1 

estimation of the bias corrected AMRs, various extrapolation techniques have been proposed (Themeßl 2 

et al., 2011; Eum and Cannon, 2017; Li et al., 2017). Among these, in this study, we used a constant 3 

extrapolation scheme over the high quantiles suggested by Themeßl et al. (2011).  4 

One major issue in the bias-correction is nonstationarity. As discussed in the introduction section, 5 

there may be significant nonstationarity in precipitation in many regions including South Korea, thus, 6 

quantile delta mapping (QDM) approach that is effective in preserving the long-term trend (Li et al., 7 

2010; Cannon et al., 2015; Miao et al., 2016; Eum and Cannon, 2017) was employed for correcting 8 

bias of the ERA-20c precipitation in terms of mean and extreme. We begin with adjusting the wet-day 9 

frequency with the same threshold used in SQM, and QDM algorithm is subseuqnetly applied for the 10 

bias correction of the ERA-20c daily precipitation ranging from 1900 to 2010. As noted in the previous 11 

section, ERA-20c daily precipitation was first divided into three period with the same data length and 12 

bias in precipitation in each period was then corrected by the QDM approach, as follows (Cannon et 13 

al., 2015; Eum and Cannon, 2017): 14 

 𝜏𝑚,𝑝 (𝑡) = 𝐹𝑚,𝑝
(𝑡)
[𝑥𝑚,𝑝(𝑡)] ,       𝜏𝑚,𝑝 (𝑡) ∈ {0, 1} (5) 

 
 𝛥𝑚(𝑡) =

𝐹𝑚,𝑝
−1 (𝜏𝑚,𝑝 (𝑡))

𝐹𝑚,𝑟−1(𝜏𝑚,𝑝 (𝑡))
=

𝑥𝑚,𝑝 (𝑡)

𝐹𝑚,𝑟−1[𝐹𝑚,𝑝 (𝑥𝑚,𝑝(𝑡))]
 (6) 

 𝑥̂𝑚,𝑝 = 𝐹𝑜,𝑟
−1[𝜏𝑚,𝑝(𝑡)] × 𝛥𝑚(𝑡) = 𝐹𝑜,𝑟

−1[𝐹𝑚,𝑝{𝑥𝑚,𝑝(𝑡)}] × 𝛥𝑚(𝑡) (7) 

 15 

Here, 𝜏𝑚,𝑝(𝑡) is the nonexceedance probability associated with the value at time t, ∆𝑚(𝑡) is the 16 

relative change in quantiles between the reference period (1974-2010) and the projected period, and 17 

𝐹𝑚,𝑟  and 𝐹𝑚,𝑝  are the CDFs of the modelled for the reference period and simulation period, 18 

respectively. A composite distribution described in Equations 1 to 3 was adopted for estimating the 19 

CDFs in Equations 5 to 7. The QDMs with the 95th and 99th upper thresholds were abbrieviated as 20 

QDM95 and QDM99, respectively. More specific information on the QDM can be found from an 21 

earlier study (Cannon et al., 2015).  22 



 

 

For the evaluation of the proposed models (SQM95, SQM99, QDM95 and QDM99), two efficiency 1 

measures such as the root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) are 2 

considered, as shown in Equations 8 and 9: 3 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑌𝑖

𝑜b𝑠 − 𝑌𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

𝑛
 (8) 

 4 

 𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

] (9) 

Here, 𝑌𝑖
𝑜𝑏𝑠  is the i-th observation, 𝑌𝑖

𝑚𝑒𝑎𝑛  is the mean of the observation, while 𝑌𝑖
𝑠𝑖𝑚  is the 5 

modelled data, and 𝑛 is the number of observations. For a favorable model performance, the NSE 6 

should be close to 1 while values close to 0 for the RMSE. In this analysis, we evaluated the bias 7 

corrected AMRs over a century long historical record (1910-2010) for 7 out of 48 stations (i.e. St.4 8 

Gangneung, St.5 Seoul, St.6 Incheon, St.17 Daegu, St.18 Jeonju, St.21 Busan and St.22 Mokpo) and 9 

over the last four decades (1974-2010) for 48 stations. To find out how well the bias corrected AMRs 10 

can represent the observed values, the AMRs over three different periods, 1974-2010, 1937-1973 and 11 

1910-1973, were additionally evaluated for the 7 stations.  12 

 13 

3.2 Bayesian Parameter Estimation 14 

Extreme precipitation is commonly characterized with the block maxima method of the extreme 15 

value theory. Specifically, AMRs were first obtained and fitted to a GEV (generalized extreme value) 16 

distribution. Suppose R indicates the AMRs in a given daily precipitation, and the CDF of the GEV 17 

distribution is then defined as bellows: 18 

 𝑓(𝐑;µ, 𝛼, 𝜉) =

{
 
 

 
 
(
1

𝜎
)(1 +

𝜉(𝐑 − µ)

𝜎
)

−
1
𝜉
−1

𝑒𝑥𝑝 {− [1 +
𝜉(𝐑 − µ)

𝜎
]

−
1
𝜉

} ,    𝜉 ≠ 0

(
1

𝜎
) 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [−

(𝐑 − 𝜇)

𝜎
] −

(𝐑 − 𝜇)

𝜎
}    𝜉 = 0

 (10) 



 

 

where 𝜇, 𝜎, 𝜉 are the location, scale and shape parameter, respectively. 1 

In this study, the parameters of distribution functions were estimated within a Bayesian modelling 2 

framework, and the derived posterior distributions of the parameters were further used to estimate 3 

design rainfalls and their uncertainties. Theoretically, the posterior distribution, 𝑝(𝛉|𝐑) , of the 4 

parameter vector (𝛉) is described as follow:  5 

 𝑝(𝛉|𝐑) =   
𝑝(𝛉, 𝐑)

𝑝(𝐑)
=  
𝑝(𝐑|𝛉)𝑝(𝛉)

𝑝(𝐑)
=  

𝑝(𝐑|𝛉)𝑝(𝛉)

∫ 𝑝(𝛉)𝑝(𝐑|𝛉)𝑑𝜃
∝ 𝑝(𝐑|𝛉)𝑝(𝛉) (11) 

where, 𝐑 is the vector of the AMRs, 𝑝(𝐑|𝛉) is the likelihood function, and 𝑝(𝐑) and 𝑝(𝛉) are 6 

the marginal distribution and prior distribution, respectively. The joint posterior distribution function 7 

𝑝(𝛉|𝐑) for the rainfall frequency model can be formulated by combining the GEV likelihood function 8 

and prior distribution as follows: 9 

 
𝑝(𝛉|𝐑) ∝∏𝐺𝐸𝑉(𝐑|𝜇, 𝜎, 𝜉) × 𝑁(𝜇|0, 103) × 𝑁(𝜎|0, 103) × 𝑁(𝜉|0, 103)

𝑛

𝑖=1

 (12) 

The posterior distribution for the parameters of GEV distribution was obtained by maximizing the joint 10 

posterior distribution as illustrated in Equation 12, via Markov Chain Monte Carlo (MCMC) algorithm, 11 

especially Metropolis-Hastings (MH) sampler. The MH method generates a sequence of random 12 

samples from a proposal density function, which subsequently approximate the desired distribution. 13 

Here, Gaussian distributions are used as prior distributions and the Markov chain eventually converges 14 

to the desired distribution through the rejection-acceptance process. The detailed information on the 15 

MCMC method can be found in Van de Vyver (2015). In this study, after 10,000 iterations, the chain 16 

is considered to be effectively converged and producing posterior distributions for the estimation of 17 

design rainfall over the entire weather stations and the corresponding grid points. 18 

 19 

3.3 Spatio-temporal change in design rainfall 20 

To explore the spatio-temporal changes in design rainfall, it is essential to obtain the spatio-temporal 21 

data for both the observed and modelled. For ERA-20c, the raw values should be first corrected against 22 



 

 

the corresponding observed precipitation over the entire grid points, especially for the ungauged 1 

catchments. Conceptually, as described in Section 3.1, the QDM method builds a transfer function 2 

based on a one-to-one relationship between the observed and modelled data. However, there are limited 3 

observed data available for matching to the corresponding grids of ERA-20c precipitation data. Under 4 

such a condition, this study considered an interpolation technique to represent the pointwise values of 5 

parameters into the grid for the ungauged catchment, in turn, leading to the use of the interpolated 6 

parameters for building the transfer function.  7 

One can consider the direct interpolation of daily precipitation based on the inverse distance 8 

weighting (IDW) method or the kriging method, however, there are many dry days in daily 9 

precipitation so that the interpolated daily precipitation data could be smoothed out, especially for the 10 

extreme. Such systematic errors associated with the spatial interpolation could be propagated through 11 

to the parameter estimation process in the QDM approach. Moreover, this direct interpolation cannot 12 

be applied without historical records in the early 20th century. For these reasons, we interpolated the 13 

estimated parameter over the entire grids, which can create the distribution parameters for the transfer 14 

function in parametric QDM approaches in ungauged basins. To implement the QDM approaches 15 

based on a composite distribution suggested in Section 3.1, the six parameters (TH, 𝛼, 𝛽, 𝜃, 𝜉 and 16 

u) should be estimated for a pair of the observed and modelled precipitation. Thus, we create the 17 

contour maps using the estimated parameters based on a scattered data interpolation method in matlab 18 

(Amidror, 2002), and then extract a set of distribution parameters covering the entire range. A flow 19 

chart for the proposed QDM procedure is illustrated in Figure 2. To evaluate the effectiveness of an 20 

interpolation approach, a leave-one-out cross validation framework is applied for the reference period 21 

(1974-2010). Specifically, one station is repeatedly excluded and validated using the estimated set of 22 

parameters from the remaining 47 stations. The bias-corrected AMRs were evaluated with regard to 23 

RMSE and NSE. 24 

 [Insert Figure 2] 25 



 

 

With the spatially corrected reanalysis, this study explored the spatio-temporal changes in design 1 

rainfalls for a 100-year return period over South Korea. For this purpose, we analyzed the relative 2 

change (RC, %) in the observed and modelled design rainfalls for the three periods, 1900-1936, 1937-3 

1973 and 1974-2010, as follows:  4 

 
𝑅𝐶(%) =

𝐷𝑟
𝑜𝑏𝑠 − 𝐷𝑝

𝑠𝑖𝑚

𝐷𝑟
𝑜𝑏𝑠 × 100 (13) 

Here, 𝐷𝑟
𝑜b𝑠 represents the design rainfall using the observed AMRs for the reference period (i.e. 1974-5 

2010), while 𝐷𝑝
𝑠𝑖𝑚  indicates the design rainfalls based on the bias corrected AMRs for the three 6 

periods. Note that we estimated the design rainfalls by fitting the bias corrected AMRs to GEV 7 

distribution, and those of the observed AMRs were obtained by an IDW method, which is commonly 8 

used in practice.  9 

In addition, we conducted a retrospective analysis to explore the temporal changes in design rainfall 10 

for a given 100-year return period using the bias-corrected century long data. More specifically, the 11 

design rainfalls obtained from the bias corrected AMRs for the whole period (1900-2010) were 12 

compared with those by the observed for the reference period (1974-2010) over South Korea. 13 

 14 

4. Results and Discussion 15 

4.1 Evaluation for the bias corrected ERA-20c  16 

To evaluate the performance of the proposed QDM approach, we collected the bias corrected AMRs 17 

and statistically compared them with those of the observed as illustrated in Figure 3. More specifically, 18 

Figures 3(a) describes the comparison between the raw ERA-20c and the bias corrected values over 19 

all stations for the reference period 1974-2010. The SQM and QDM approaches performed reasonably 20 

well, 0.914 and 0.891 for NSE and 18.65mm and 20.93mm for RMSE, respectively, while the raw 21 

ERA-20c showed -0.562 for NSE and 79.81 for RMSE. Here, QDM and SQM with the same upper 22 

threshold conceptually give the same error for the reference period. For a comparison with the century 23 



 

 

long data for 7 stations, a significant reduction in the bias was identified by QDM and SQM, as shown 1 

in Figure 3(b). It can be shown that QDM approaches performed slightly better than the corresponding 2 

SQMs. For QDM99, the agreement to the observed were 27.11mm for RMSE and 0.824 for NSE, 3 

indicating the better performance than SQM99 with 28.11mm for RMSE and 0.810 for NSE. For 4 

QDM95, the model efficiency in terms of NSE was comparable with that of the SQM95, but RMSE 5 

was slightly smaller than that of the SQM95. These results suggest that QM approaches applied in this 6 

study can significantly reduce the bias in daily precipitation for the whole 20th century, and QDM 7 

approaches are more efficient than SQM schemes, especially for the AMRs, during the whole 20th 8 

century.  9 

  [Insert Figure 3] 10 

 However, the validation results in three different periods showed that the proposed bias correction 11 

scheme has a limitation in reproducing extreme values as shown in Figure 4. As illustrated in Figure 12 

4(a), the AMRs over 7 stations during 1974-2010 are reasonably well reproduced and comparable to 13 

that of the observed in Figure 3(a). On the other hand, a relative increase in bias in AMRs is clearly 14 

seen in the period, 1937-1973, as shown in Figure 4(b) and 4(c).  15 

[Insert Figure 4] 16 

 The bias corrected ERA-20c was significantly overestimated in the upper tail in QDM approaches, 17 

as illustrated in Figures 4(b) and 4(c). The large deviations in the top 5% of extremes between the 18 

observed (∆𝑜) and modelled (∆𝑚), which can be estimated from Equation 6, is most likely responsible 19 

for the overestimation. Conceptually, the QDM begins with the premise that the relative change in the 20 

modelled precipitation over the reference and simulation period is identical to these transformations 21 

of the observed. However, the relative changes for a few certain quantiles in the modelled are notably 22 

higher than the observed, especially for the high extremes, which can lead to the overestimation 23 

identified in Figure 4. More specifically, Figure 5 represents the relative change in a descending order 24 

of extreme rainfalls between the reference period (1974-2010) and the past period (1937-1973) for the 25 



 

 

observed and raw ERA-20c. The relative changes generally showed a similar trend with a ratio around 1 

1 in both the observed and modelled, but the large deviations are clearly identified for high extremes. 2 

For example, the relative change at St.17 Daegu station is about 1.3 for the modelled, while the value 3 

for the observed was less than 1. Under the assumption of QDM approaches, the bias corrected data 4 

for the simulation period is increased by 1.3, leading to the increased deviation in AMRs between the 5 

in-situ and modelled data. Apart from the misrepresentation of high extremes, other aspects could also 6 

influence the differences. The significant inconsistency in long-term trend, especially for the extreme 7 

in the first half of the 20th century, could also result in the bias (Befort et al., 2016; Donat et al., 2016).  8 

[Insert Figure 5] 9 

 10 

4.2 Uncertainty Reduction in Design Rainfall using ERA-20c 11 

Although the suggested QM approaches still have the biases in the high extremes, the bias-12 

corrected AMRs showed a significant reduction in the systematic bias and comparable results across 13 

three different periods. We explore changes in design rainfall and their uncertainties in the context of 14 

a century precipitation data. In many countries, the estimation of design rainfall is based on AMRs 15 

collected over a relatively short period of time that can lead to high uncertainty in estimating 16 

parameters for a given distribution. For this purpose, we evaluated the uncertainties of design rainfall 17 

with different return levels (i.e. 30-year, 50-year and 100-year return period) for both the observed and 18 

the bias corrected ERA-20c by QDM approaches (i.e. QDM95 and QDM99) over 48 stations. Note 19 

that the uncertainties derived from the bias corrected AMRs for the reference period (1974-2010) were 20 

named as QDM95v1 and QDM99v1, respectively, and the uncertainties using the values from 1900 to 21 

2010 were named as QDM95v0 and QDM99v0, respectively. The uncertainty range of design rainfall 22 

for six stations (i.e. in St. 5, St. 13, St. 21. St. 29, St. 37 and St. 43) for a representative experiment is 23 

illustrated in Figure 6, and the results for the remaining stations can be found in Appendix B. For the 24 

reference period, the median values of design rainfalls obtained from the bias corrected ERA-20c are 25 



 

 

comparable to those of the observed while their uncertainty range is largely extended, except for Busan 1 

and Gumi stations. As seen in Figure 6, design rainfalls by the observed also have large uncertainties 2 

for the reference period. On the other hand, the uncertainty range of design rainfall using a century 3 

precipitation data (i.e. QDM95v0 and QDM99v0) is much narrower than that for the reference period 4 

(i.e. QDM95v1 and QDM99v1). It is logical to assume that the uncertainty reduction in design rainfall 5 

is mainly attributed to the increase in sample size. Thus, the long-term bias corrected rainfall has its 6 

own advantage in terms of the increase of the sample size, leading to the uncertainty reduction in 7 

design rainfall. 8 

 [Insert Figure 6] 9 

The increase in the uncertainty of design rainfall may be attributed to the GEV parameters, especially 10 

for the shape parameter, and this study is assuming that the associated uncertainty could be reduced by 11 

the use of long-term data. In this regard, we further explored the role of the bias corrected rainfall for 12 

uncertainty reduction in design rainfall in the context of prior information within a Bayesian 13 

framework. More specifically, the range of GEV parameters estimated from the bias corrected century 14 

long reanalysis data (i.e. QDM95v0 and QDM99v0) is considered as the prior distribution for the 15 

estimation of the distribution parameters within a Bayesian framework. We examined the role of the 16 

prior distribution informed by the bias corrected long-term reanalysis data in the uncertainty reduction 17 

in design rainfall. Three different cases with regard to the use of prior distributions were considered; 18 

(1) the sole use of prior distribution for shape parameter, (2) the use of prior distributions for both scale 19 

and location parameters, and (3) the combined use of prior distributions for all three parameters within 20 

the QDMs. The first experiments with QDM95v0 and QDM99v0 were named as Obs95a and Obs99a, 21 

respectively. The second experiments were named as Obs95b and Obs99b, and the final experiments 22 

were named as Obs95c and Obs99c, respectively. The comparison of three different experiments for 23 

the uncertainty reduction in design rainfall is illustrated in Figure 7. As shown in Figure 7, the median 24 

values are comparable over all cases presented here but a significant shrinkage of the uncertainty range 25 



 

 

is seen in most cases where informative priors are considered. Among three approaches, the combined 1 

use of prior distribution for all the parameters (experiment 3) showed the greater reduction in the 2 

uncertainty than either the experiments 1 or 2. More specifically, for St.5 Seoul, St.21 Busan and St. 3 

45 Gumi where the uncertainty range of design rainfall is exceptionally high, the degree of reduction 4 

in uncertainty for the experiment 1 (sole use of prior distribution for the shape parameter) is closely 5 

followed to that of the experiment 3, while experiment 2 (use of prior distributions for the location and 6 

shape parameters) still has large uncertainty. On the other hand, the reduction of uncertainty in other 7 

three stations, St.13, St.29 and St.37, for the experiment 1 is nearly similar to that of the experiment 2. 8 

In these contexts, we can conclude that the uncertainty reduction in the design rainfall can be mainly 9 

attributed to the use of prior distribution for the shape parameter, informed by the long-term reanalysis 10 

data. 11 

[Insert Figure 7] 12 

 13 

4.3 Spatio-temporal Change in Design Rainfall  14 

To begin with, we evaluated the spatial interpolation approach for ERA-20c within a leave-one-out 15 

cross validation scheme. The bias-corrected AMRs for the reference period were compared with the 16 

corresponding observation over 48 stations in terms of RMSE and NSE. In Figure 8, the result 17 

indicated that the bias-corrected AMRs were generally comparable to those from the observed, 18 

although the slightly increased bias were observed, compared to the individual correction as illustrated 19 

in Figure 3(a). The result implies that the bias correction scheme based on a set of interpolated 20 

parameters informed by the observed parameters could reliably provide spatially interpolated long-21 

term data, especially for exploring changes in design rainfall. It should be noted that QDM and SQM 22 

have the same results for the reference period, and QM approaches with the 95th and 99th percentiles 23 

are labelled as QM95 and QM99 in figure 8.  24 

[Insert Figure 8] 25 



 

 

For the exploration of spatio-temporal change in rainfall intensity over the 20th century, this study 1 

compared design rainfalls using the bias corrected ERA-20c over the entire areas for a given 100-year 2 

return period, with those of the observation for the reference period (1974-2010). The relative change 3 

(%) of design rainfalls between the observed and the modelled for three different periods (1900-1936, 4 

1937-1973 and 1974-2010) is illustrated in Figure 9. For the reference period in Figure 9(a), the relative 5 

difference is generally limited within 10% in both QDM95 and QDM99 approaches, although a slight 6 

increase in bias of particular areas is observed. The QDM99 shows better performance although the 7 

difference between the two approaches is not significant. Thus, the results based on the QDM99 is 8 

mainly considered for subsequent analysis on the spatial-temporal change in rainfall intensity over 9 

South Korea.  10 

For the period from 1937 to 1973 as shown in Figure 9(b), changes in the design rainfall vary spatially, 11 

and a noticeable change is observed in the southwest, suggesting a significant decrease in the rainfall 12 

intensity over the last three decades. On the other hand, an insignificant change in the rainfall intensity 13 

is identified in the western and eastern parts of South Korea for the period. Under the circumstances, 14 

the estimated design rainfall during that period may not be appropriate in a changing climate even if 15 

the bias in the ERA-20c is considered. For the period 1900-1936, changes in rainfall intensity relative 16 

to the current climate is illustrated in Figure 9(c), and they reveal a similar pattern over the entire areas, 17 

representing a noticeable increase in rainfall intensity over the last three decades. It can be concluded 18 

that the significant changes in rainfall intensity over different periods can lead to a misrepresentation 19 

of the design rainfall (or design flood) and are likely to misrepresent the flood risk, particularly at high 20 

return levels in the future.  21 

Unlike the results presented in Figures 9(a) to 9(c), the AMRs over the entire period are used to further 22 

explore the changes in design rainfall, with that of the observed for the reference period (1974-2010), 23 

in Figure 9(d). As in the reference period in Figure 9(a), the relative changes in this period similarly 24 

limited within 10%. However, the spatial distribution of relative change is slightly different from the 25 



 

 

changes based on the reference period from 1974 to 2010. More specifically, a positive change is more 1 

pronounced in the northern part of South Korea, confirming that its role of the recent increase in the 2 

rainfall intensity, while negative change is still remained in the south-western part of South Korea. 3 

This result implies that design rainfall estimated during that period can be significantly underestimated, 4 

leading to a potential increase in the flood risk in view of the present in most areas. 5 

[Insert Figure 9] 6 

Estimating design rainfall in a certain area plays an important role in managing risk associated with 7 

water-related hazards. In many countries including South Korea, design rainfall is routinely estimated 8 

with limited data for a given return period exceeding the length of the data record for planning 9 

structural or non-structural measures. In this context, the estimated design rainfall can be significantly 10 

influenced by sampling error, leading to an increase in uncertainty. Numerous studies have shown that 11 

temporal change in extreme rainfall has been observed, and especially an increasing trend has been 12 

reported in many parts of the world (Mason et al., 1999; Jung et al., 2011; Park et al., 2011; Westra et 13 

al., 2014; Yilmaz et al., 2014). This non-stationarity in extreme rainfall is expected to be larger in the 14 

future and the current design practice may not be appropriate under the condition. For this reason, the 15 

guideline recommendations considering the potential impact of the nonstationarity on either design 16 

rainfall or design flood have been proposed by various studies (Lawrence and Hisdal, 2011; Madsen 17 

et al., 2014; Environment Agency, 2017). These guidelines typically recommend to employ a 18 

correction factor, corresponding to the expected change, in the estimation of design rainfall and design 19 

flood (Madsen et al., 2014). For instance, the Environment Agency (2017) in UK recommended to 20 

increase the rainfall intensity from 5 % to 40% for the future period (2015-2115) over the entire 21 

England and Wales. In Norway, a wider range of correction factors (i.e. 0-40%) were similarly 22 

recommended for design flood (Lawrence and Hisdal, 2011). This approach may help to reduce the 23 

flood risk for a given region in a changing climate. However, in consideration of the wider range of 24 

uncertainty in design rainfall with the limited data as illustrated in Figures 6 and A2, the use of longer 25 



 

 

data plays a crucial role in the reliable estimation of design rainfall with the uncertainty reduction.  1 

 2 

5. Concluding remarks 3 

The objective of this study was to examine the ERA-20c reanalysis data and its use for assessing 4 

long term changes in design rainfall over South Korea, by extending the AMRs through the bias 5 

correction of the reanalysis data. In this context, we first applied the stationary and non-stationary QM 6 

approaches using a composite distribution, referred to as QDM and SQM, to reduce the biases. More 7 

specifically, this study evaluated not only the accuracy of the bias corrected AMRs but also their use 8 

for the uncertainty reduction in design rainfalls within the Bayesian framework. Finally, we explored 9 

the spatio-temporal changes in design rainfalls. The major findings obtained in this study are 10 

summarized as follows: 11 

1. QM approaches (i.e. SQM and QDM) are significantly effective in reducing the bias of daily 12 

precipitation from the ERA-20c reanalysis data, and QDM approaches are more efficient than 13 

SQM schemes for the whole 20th century, especially for the AMRs. On the other hand, the 14 

validation results over different periods showed that the proposed bias correction scheme has a 15 

limitation in reproducing extreme values. To be more specific, the AMRs during 1974-2010 are 16 

reasonably well reproduced and comparable to that of the observed, however, a relative increase 17 

in bias in AMRs is clearly observed in the period, 1937-1973. It can be concluded that the 18 

increase in bias in that period is attributed to the large deviations for high extremes (i.e. top 5 19 

events). Additionally, an inconsistency in long-term trend, especially for the extreme in the first 20 

half of the 20th century, could also result in the bias. 21 

2. This study evaluated the uncertainties of design rainfalls with different return levels for both the 22 

observed and the bias corrected ERA-20c by QDM approaches. The uncertainty range of design 23 

rainfall using a century precipitation data is much narrower than that for the reference period 24 

due to the increase in sample size. Thus, the long-term bias corrected rainfall has their own 25 



 

 

advantage in terms of the increase of the sample size, leading to the uncertainty reduction in 1 

design rainfall. We further explored the role of the bias corrected rainfall for uncertainty 2 

reduction in design rainfall via three different experiments in the context of prior information 3 

within a Bayesian framework. A significant shrinkage of the uncertainty range is seen in all the 4 

cases where informative priors are considered. In the experimental study, we can conclude that 5 

the uncertainty reduction in the design rainfall can be mainly attributed to the use of prior 6 

distribution for the shape parameter, informed by the long-term reanalysis data. 7 

3. There were significant changes in design intensity according to the periods (1900-1936, 1937-8 

1973 and 1974-2010), which can lead to a misrepresentation of the flood risk, particularly at 9 

high return levels in the future. Design rainfall change derived from the bias-corrected AMRs 10 

from 1900 to 2010 suggested that the recent increase in the rainfall intensity should be 11 

considered in managing risk associated with water-related hazards. 12 

4. This study finally compared design rainfalls of using the bias corrected ERA-20c over the entire 13 

areas for a given 100-year return period, with those of the observation for the reference period 14 

(1974-2010). The spatial distribution of relative change using the AMRs over the entire period 15 

is different from the changes based on the reference period from 1974 to 2010. More specifically, 16 

a positive change is more pronounced in the northern part of South Korea, confirming that its 17 

role of the recent increase in the rainfall intensity. This result implies that design rainfall 18 

estimated during that period can be significantly underestimated, leading to a potential increase 19 

in the flood risk in view of the present in most areas. 20 

The findings obtained in this study provide a meaningful perspective on the use of long-term reanalysis 21 

data for the uncertainty reduction in design rainfall. Further, this study helps to better understand the 22 

long-term changes in rainfall intensity over the past century in South Korea. Although the study has 23 

been performed only in South Korea, we hope this study will stimulate the hydro-meteorological 24 

community to explore the issues raised in the long-term reanalysis data in other countries under 25 



 

 

different climate and geographical conditions. 1 
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Appendix A. Selection of the Upper Thresholds 1 

As described in Section 3.1, the QM approaches used in this study are based on a composite 2 

distribution of a gamma and GPD. Thus, determining the upper threshold is an essential part in this 3 

parametric approach. Previous papers have commonly applied high thresholds such as 95th or 99th 4 

percentile to the bias correction because the distribution over high values is asymptotically fitted to a 5 

GPD (Manton et al., 2001; Wilson and Toumi, 2005; Acero et al., 2011; Gutjahr and Heinemann, 2013; 6 

Chan et al., 2015; Nyunt et al., 2016; Kim et al., 2018). This approach is based on the assumption that 7 

the upper thresholds for the observed and modelled are identical, although the distribution of each 8 

dataset can be different. In this context, we considered three different thresholds, the 90th, 95th and 99th 9 

percentile, and applied a mixture of the thresholds for the observed and modelled, respectively. For 10 

example, the CDF of the observed with the 90th percentile was matched to the modelled with the 90th, 11 

95th and 99th percentile, respectively. Likewise, the nine different sets of thresholds were evaluated to 12 

determine the optimal threshold pair in 48 stations for the reference period (1974-2010) based on the 13 

QM schemes described in Section 3.1. The abbreviations for QM approaches with different thresholds 14 

are described in Table A1.  15 

 16 

Table A1. Abbreviations for QM approaches depending on the thresholds 17 

ID 
ERA-20c 

90th 95th 99th 

OBS 

90th QM9090 QM9095 QM9099 

95th QM9590 QM9595 QM9599 

99th QM9990 QM9995 QM9999 

  18 

 Figure A1 illustrates the comparison of the AMRs between the observation in 48 stations and the 19 

bias-corrected ERA-20c in the corresponding grid points from 1974 to 2010. In Figure A1, the 20 

algorithm with a same pair of thresholds, especially QM9595 and QM9999, performed better than the 21 

other approaches. Interestingly, with the same threshold for the observed, the QM scheme with the 22 

lower modelled threshold like QM9099 underestimated the extremes, while the opposite case such as 23 



 

 

QM9099 had relatively overestimated values. This result implies that how to set the upper threshold 1 

in the QM algorithm applied in this study may significantly affect the reliability of the bias-corrected 2 

value, especially for the extreme. Thus, we apply the 95th or 99th percentile pair as upper thresholds to 3 

the bias correction process.  4 

 5 

 6 

 7 

Fig A1. Scatter plot between the Annual maximum rainfalls of the observation and modelled (the raw ERA-8 

20c(RAW) and the bias-corrected valued by QM approaches) for the reference period (1974-2010) in 48 stations  9 

 10 
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  12 



 

 

Appendix B. Uncertainty ranges of design rainfalls in 48 stations 1 

2 
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 2 

Figure A2. Comparison of the uncertainties for design rainfalls with different return levels (i.e. 30-year, 50-year 3 

and 100-year return period) for both the observed (Obs) and the bias corrected ERA-20c by QDM approaches over 4 

48 stations. Here, QDM95v1 and QDM99v1 represent the values estimated for the reference period (i.e. 1974-5 

2010) while QDM95v0 and QDM99v0 are derived from 1900 to 2010.  6 



 

 

Appendix C. List of Abbreviations 1 

ID Definitions 

AMR Annual maximum rainfall 

CDF Cumulative distribution functions 

ECMWF European Centre for Medium-Range Weather Forecasts 

ERA-20c ECWMF’s 20th century reanalysis assimilated by surface observations only 

ERA-20cm ECMWF’s 20th century atmospheric model ensemble  

GEV Generalized extreme value distribution 

GPD Generalized Pareto distribution 

IDW Inverse distance weighting method  

KMA Kora Meteorological Administration 

NOAA National Oceanic and Atmospheric Administration 

Obs95a/ 

Obs99a 

Uncertainty of the observation-based design rainfall with the prior distribution for shape 

parameter, informed by the bias-corrected values based on QDM95/QDM99 

Obs95b/ 

Obs99b  

Uncertainty of the observation-based design rainfall with the prior distributions for location 

and shape parameters, informed by the bias-corrected values based on QDM95/QDM99 

Obs95c/ 

Obs99c 

Uncertainty of the observation-based design rainfall with the prior distributions for all 

parameters, informed by the bias-corrected values based on QDM95/QDM99 

NSE Nash-Sutcliffe efficiency 

RMSE Root mean square error 

QM Quantile mapping 

QDM Quantile delta mapping 

QDM-GP QDM method of combining a composite Gamma-Pareto distribution  

QDM95/ 

QDM99 
QDM with the upper tail of 95th/99th percentile 

QDM95v1/ 

QDM99v1 

Design rainfall by using the bias-corrected AMRs based on QDM95/QDM99 for the 

reference period (1974-2010) 

QDM95v0/ 

QDM99v0 

Design rainfall by using the bias-corrected AMRs based on QDM95/QDM99 for the whole 

data period (1900-2010) 

SQM Quantile mapping approach based on the stationary assumption 

SQM95/ 

SQM99 
SQM with the upper tail of 95th/99th percentile 

SQM95v1/ 

SQM99v1 

Design rainfall by using the bias-corrected AMRs based on SQM95/SQM99 for the 

reference period (1974-2010) 

SQM95v0/ 

SQM99v0 

Design rainfall by using the bias-corrected AMRs based on SQM95/SQM99 for the whole 

data period (1900-2010) 

TH Cut-off threshold for a composite distribution 

20CR The 20th century reanalysis by the NOAA 

 2 

Appendix D. List of Symbols 3 

ID Definitions 

𝛼 shape parameter of a gamma distribution   

𝛽 scale parameter of a gamma distribution   

𝜉 Shape parameter of a GPD 

𝜃 Scale parameter of a GPD 

u High upper threshold for a GPD 
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Tables  1 

 2 

Table 1. The local rainfall stations used in this study 3 

Station No. Name Latitude (°N) Longitude (°E) 
Elevation  

(m. asl) 
Data period 

St. 1 Sokcho 38.2508 128.5644 19.5 1974-2010 

St. 2 Daegwallyeong 37.6769 128.7181 774.0 1974-2010 

St. 3 Chuncheon 37.9025 127.7356 79.1 1974-2010 

St. 4 Gangneung 37.7514 128.8908 27.4 1912-2010 

St. 5 Seoul 37.5714 126.9656 11.1 1910-2010 

St. 6 Incheon 37.4775 126.6247 69.6 1910-2010 

St. 7 Wonju 37.3375 127.9464 150.0 1974-2010 

St. 8 Suwon 37.2700 126.9875 38.3 1974-2010 

St. 9 Chungju 36.9700 127.9525 116.5 1974-2010 

St. 10 Seosan 36.7736 126.4958 30.3 1974-2010 

St. 11 Cheongju 36.6361 127.4428 58.6 1974-2010 

St. 12 Daejeon 36.3689 127.3742 70.3 1974-2010 

St. 13 Chupungyeong 36.2197 127.9944 246.1 1974-2010 

St. 14 Andong 36.5728 128.7072 141.5 1974-2010 

St. 15 Pohang 36.0325 129.3794 3.7 1974-2010 

St. 16 Gunsan 36.0019 126.7631 24.6 1974-2010 

St. 17 Daegu 35.8850 128.6189 65.5 1910-2010 

St. 18 Jeonju 35.8214 127.1547 54.8 1919-2010 

St. 19 Ulsan 35.5600 129.3200 36.0 1974-2010 

St. 20 Gwangju 35.1728 126.8914 73.8 1974-2010 

St. 21 Busan 35.1044 129.0319 71.0 1910-2010 

St. 22 Mokpo 34.8167 126.3811 39.4 1910-2010 

St. 23 Yeosu 34.7392 127.7406 66.0 1974-2010 

St. 24 Jinju 35.1636 128.0400 31.6 1974-2010 

St. 25 Yangpyeong 37.4886 127.4944 49.4 1974-2010 

St. 26 Icheon 37.2639 127.4842 79.4 1974-2010 

St. 27 Inje 38.0600 128.1669 201.6 1974-2010 

St. 28 Hongcheon 37.6833 127.8803 142.3 1974-2010 

St. 29 Jecheon 37.1592 128.1942 265.0 1974-2010 

St. 30 Boeun 36.4875 127.7339 176.4 1974-2010 

St. 31 Cheonan 36.7794 127.1211 24.0 1974-2010 

St. 32 Boryeong 36.3269 126.5572 16.9 1974-2010 

St. 33 Buyeo 36.2722 126.9206 12.7 1974-2010 

St. 34 Geumsan 36.1056 127.4817 171.7 1974-2010 

St. 35 Buan 35.7294 126.7164 13.4 1974-2010 

St. 36 Imsil 35.6122 127.2853 249.3 1974-2010 

St. 37 Jeongeup 35.5631 126.8658 46.0 1974-2010 

St. 38 Namwon 35.4053 127.3328 91.7 1974-2010 

St. 39 Jangheung 34.6886 126.9194 46.4 1974-2010 

St. 40 Haenam 34.5533 126.5689 14.4 1974-2010 

St. 41 Goheung 34.6181 127.2756 54.5 1974-2010 

St. 42 Yeongju 36.8717 128.5167 212.2 1974-2010 

St. 43 Mungyeong 36.6272 128.1486 172.0 1974-2010 

St. 44 Uiseong 36.3558 128.6883 83.2 1974-2010 

St. 45 Gumi 36.1306 128.3206 50.3 1974-2010 

St. 46 Yeongcheon 35.9772 128.9514 95.0 1974-2010 

St. 47 Geochang 35.6711 127.9108 222.4 1974-2010 

St. 48 Sancheong 35.4128 127.8789 0.8 1974-2010 

 4 
 5 

  6 



 

 

Figures 1 

 2 

 3 
Figure 1. A map showing the study area, local gauging stations, grid points of ERA-20c and evaluation points. The 4 

grey shading on the map indicates elevations 5 
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Figure 2. A flowchart of the quantile mapping approach with a composite distribution in gauging stations and 4 

ungauged catchment  5 
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(a) 1 
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(b)  3 

 4 

Fig 3. Scatter plot between the Annual maximum rainfalls of the observed and the bias-corrected ERA-20c over (a) 5 

all 48 stations for the reference period (1974-2010) and (b) 7 stations from 1910 to 2010 6 
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(a) 1 
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(b) 3 
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(c) 5 

 6 

Fig 4. Scatter plot between the Annual maximum rainfalls of the observed and the bias-corrected ERA-20c during 7 

(a) 1974-2010, (b) 1937-1973 and (c) 1910-1973 in 7 stations 8 

  9 



 

 

 1 

Fig 5. Relative changes in the descending-ordered extreme rainfalls between the reference period (1974-2010) and 2 

past period (1937-1973) for the observation (Obs.) in 7 stations and the raw ERA-20c (Model) in the 3 

corresponding 7 grid points 4 

  5 



 

 

 1 

Fig 6. Boxplot for the uncertainties of design rainfalls with 30-year, 50-year and 100-year return period for the 2 

observation (Obs) and the bias corrected ERA-20c by QDM approaches in 6 stations (St5. Seoul, St.13 3 

Chupungyeong, St.21 Busan, St.29 Jecheon, St.37 Jeongeup and St.45 Gumi). QDM95v1 and QDM99v1 represent 4 

the values estimated for the reference period (i.e. 1974-2010) while QDM95v0 and QDM99v0 are derived from 5 

1900 to 2010. Note that the ends of the whiskers in boxplots mean 9% and 91% of the simulated by MCMC 6 

approach  7 
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 1 
 2 
Fig 7. Boxplot for the uncertainties of design rainfalls with 30-year, 50-year and 100-year return period for the 3 

observation using the prior information from the bias corrected ERA-20c by QDM approaches in 6 stations (St5. 4 

Seoul, St.13 Chupungyeong, St.21 Busan, St.29 Jecheon, St.37 Jeongeup and St.45 Gumi). Here, Obs indicates the 5 

values based on the non-informative prior distribution, Obs95a and Obs99a were estimated by the shape parameter 6 

information from QDM95v0 and QDM99v0, respectively, Obs95b and Obs99b were based on the corresponding 7 

scale and location parameter information, and Obs95c and Obs99c were derived from the prior informations of the 8 

all parameters.  9 
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 1 

Fig 8. Scatter plot between the Annual maximum rainfalls of the observed and the bias-corrected ERA-20c by QM 2 

approaches (QM95 and QM99) over all 48 stations for the reference period (1974-2010). The result presented here 3 

are obtained by leave-one-out cross validation. 4 
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 8 
Fig 9. Relative change (%) in design rainfalls of the modelled in four different periods, (a) 1974-2010, (b) 1937-9 
1973, (c) 1900-1936 and (d) 1900-2010, compared with those of the observed for the reference period (1974-2010).  10 


