558 research outputs found

    Contentious Coexistence: The Function Of Material Exchanges In Venetian-egyptian Relations On The Eve Of The Ottoman Conquest (1480-1517)

    Get PDF
    This dissertation studies cross-cultural exchanges of material goods in order to better understand early modern encounters between subjects of Venice and the Mamluk Sultanate of Egypt. It focuses on the period 1480 to 1517, when the ascendant Portuguese and Ottoman empires began to alter the balance of power in both the Mediterranean Sea and Indian Ocean. Venetian merchants had by this time established communities in Egypt and the Levant in their search for pepper and other spices, and periodically called in ambassadors to intervene with the Mamluk sultans on their behalf. An examination of gift giving and other exchanges of goods among diplomats, merchants, pilgrims, consuls, and translators therefore serves as a window into the relationship between Venetian and Mamluk subjects in the turbulent years prior to the Ottoman conquest of Egypt in 1517. Making use of anthropological and sociological literature on reciprocity and interaction rituals, this project studies the symbolism contained in the objects exchanged, analyzes the ways in which different transactions constituted communicative acts, and scrutinizes the language of the sources to assess why observers chose to define transactions as licit or illicit. In doing so, it reframes ongoing debates about the Mediterranean, which dispute whether the region constituted an area of cultural confrontation or a shared zone of tolerance. This study reappraises that debate and takes a new position recognizing coexistence while also conceding that harmony was frequently punctuated by bloody moments of ethnic strife. The subjects of Venice and Egypt used objects to interact and communicate in a time of crisis, but with mixed results. Material exchanges at times helped foster cooperation and coexistence, and at other times went awry, engendering hostility between the members of these two regimes

    Connectivity motifs of inhibitory neurons in the mouse Auditory Cortex

    Full text link
    Connectivity determines the function of neural circuits and it is the gateway to behavioral output. The emergent properties of the Auditory Cortex (ACx) have been difficult to unravel partly due to our assumption that it is organized similarly to other sensory areas. But detailed investigations of its functional connectivity have begun to reveal significant differences from other cortical areas that perform different functions. Using Laser Scanning Photostimulation we previously discovered unique circuit features in the ACx. Specifically, we found that the functional asymmetry of the ACx (tonotopy and isofrequency axes) is reflected in the local circuitry of excitatory inputs to Layer 3 pyramidal neurons. In the present study we extend the functional wiring diagram of the ACx with an investigation of the connectivity patterns of inhibitory subclasses. We compared excitatory input to parvalbumin (PV) and somatostatin (SOM)-expressing interneurons and found distinct circuit-motifs between and within these subpopulations. Moreover, these connectivity motifs emerged as intrinsic differences between the left and right ACx. Our results support a functional circuit based approach to understand the role of inhibitory neurons in auditory processing

    The Case for Combining a Large Low-Band Very High Frequency Transmitter With Multiple Receiving Arrays for Geospace Research: A Geospace Radar

    Get PDF
    We argue that combining a high‐power, large‐aperture radar transmitter with several large‐aperture receiving arrays to make a geospace radar—a radar capable of probing near‐Earth space from the upper troposphere through to the solar corona—would transform geospace research. We review the emergence of incoherent scatter radar in the 1960s as an agent that unified early, pioneering research in geospace in a common theoretical, experimental, and instrumental framework, and we suggest that a geospace radar would have a similar effect on future developments in space weather research. We then discuss recent developments in radio‐array technology that could be exploited in the development of a geospace radar with new or substantially improved capabilities compared to the radars in use presently. A number of applications for a geospace radar with the new and improved capabilities are reviewed including studies of meteor echoes, mesospheric and stratospheric turbulence, ionospheric flows, plasmaspheric and ionospheric irregularities, and reflection from the solar corona and coronal mass ejections. We conclude with a summary of technical requirements

    Aperture Synthesis Radar Imaging for Upper Atmospheric Research

    Get PDF

    Simulations of secondary Farley-Buneman instability driven by a kilometer-scale primary wave: anomalous transport and formation of flat-topped electric fields

    Full text link
    Since the 1950s, high frequency and very high frequency radars near the magnetic equator have frequently detected strong echoes caused ultimately by the Farley‐Buneman instability (FBI) and the gradient drift instability (GDI). In the 1980s, coordinated rocket and radar campaigns made the astonishing observation of flat‐topped electric fields coincident with both meter‐scale irregularities and the passage of kilometer‐scale waves. The GDI in the daytime E region produces kilometer‐scale primary waves with polarization electric fields large enough to drive meter‐scale secondary FBI waves. The meter‐scale waves propagate nearly vertically along the large‐scale troughs and crests and act as VHF tracers for the large‐scale dynamics. This work presents a set of hybrid numerical simulations of secondary FBIs, driven by a primary kilometer‐scale GDI‐like wave. Meter‐scale density irregularities develop in the crest and trough of the kilometer‐scale wave, where the total electric field exceeds the FBI threshold, and propagate at an angle near the direction of total Hall drift determined by the combined electric fields. The meter‐scale irregularities transport plasma across the magnetic field, producing flat‐topped electric fields similar to those observed in rocket data and reducing the large‐scale wave electric field to just above the FBI threshold value. The self‐consistent reduction in driving electric field helps explain why echoes from the FBI propagate near the plasma acoustic speed.NSF grants PHY-1500439 and AGS-1755350 and NASA grant NNX14AI13G supported the research presented in this work. This work used TACC and XSEDE computational resources supported by the National Science Foundation grant ACI-1053575. This paper did not use any data; simulation runs are archived on the TACC Ranch system. The authors thank one anonymous reviewer for helpful comments. (PHY-1500439 - NSF; AGS-1755350 - NSF; NNX14AI13G - NASA; ACI-1053575 - National Science Foundation)Published version2019-07-0

    Imaging radar observations and nonlocal theory of large-scale plasma waves in the equatorial electrojet

    No full text
    International audienceLarge-scale (l ~ 1 km) waves in the daytime and night-time equatorial electrojet are studied using coherent scatter radar data from Jicamarca. Images of plasma irregularities within the main beam of the radar are formed using interferometry with multiple baselines. These images are analyzed according to nonlocal gradient drift instability theory and are also compared to nonlinear computer simulations carried out recently by Ronchi et al. (1991) and Hu and Bhattacharjee (1999). In the daytime, the large-scale waves assume a non-steady dynamical equilibrium state characterized by the straining and destruction of the waves by shear and diffusion followed by spontaneous regeneration as predicted by Ronchi et al. (1991). At night, when steep plasma density gradients emerge, slowly propagating large-scale vertically extended waves predominate. Eikonal analysis suggests that these waves are trapped (absolutely unstable) or are nearly trapped (convectively unstable) and are able to tunnel between altitude regions which are locally unstable. Intermediate-scale waves are mainly transient (convectively stable) but can become absolutely unstable in narrow altitude bands determined by the background density profile. These characteristics are mainly consistent with the simulations presented by Hu and Bhattacharjee (1999). A new class of large-scale primary waves is found to occur along bands that sweep westward and downward from high altitudes through the E-region at twilight

    High altitude large-scale plasma waves in the equatorial electrojet at twilight

    Get PDF
    Jicamarca radar observations of a new class of large-scale plasma waves in the equatorial electrojet (EEJ) are presented and characterized. The study is based on long-term (204 days), single-baseline interferometry observations made in 2003 using a low-power radar mode, also known as JULIA mode, along with a few hours of observations made in an aperture synthesis imaging mode. The large-scale waves are found to occur at high altitudes in the E-region, mainly between 120 and 140km, around twilight (between 18:30 and 20:00 LT), with durations of a few minutes to an hour. In our long-term observations, these large-scale waves occur very often (between 1 and 5 out 10 nights), drift westward (~70 ms<sup>–1</sup>), exhibit very narrow spectral widths, and have both positive and negative Doppler shifts. The imaging results show that the large-scale waves occur along tilted bands that sweep westward and downward (~30–60ms<sup>–1</sup>), with a horizontal separation between bands of about 10–15km. The cause of the waves remains unknown. <br><br><b>Key words.</b> Ionosphere (ionospheric irregularities; equatorial ionosphere; instruments and techniques

    Integration of Subthreshold and Suprathreshold Excitatory Barrages along the Somatodendritic Axis of Pyramidal Neurons

    Get PDF
    Neurons integrate inputs arriving in different cellular compartments to produce action potentials that are transmitted to other neurons. Because of the voltage- and time-dependent conductances in the dendrites and soma, summation of synaptic inputs is complex. To examine summation of membrane potentials and firing rates, we performed whole-cell recordings from layer 5 cortical pyramidal neurons in acute slices of the rat's somatosensory cortex. We delivered subthreshold and suprathreshold stimuli at the soma and several sites on the apical dendrite, and injected inputs that mimic synaptic barrages at individual or distributed sites. We found that summation of subthreshold potentials differed from that of firing rates. Subthreshold summation was linear when barrages were small but became supralinear as barrages increased. When neurons were discharging repetitively the rules were more diverse. At the soma and proximal apical dendrite summation of the evoked firing rates was predominantly sublinear whereas in the distal dendrite summation ranged from supralinear to sublinear. In addition, the integration of inputs delivered at a single location differed from that of distributed inputs only for suprathreshold responses. These results indicate that convergent inputs onto the apical dendrite and soma do not simply summate linearly, as suggested previously, and that distinct presynaptic afferents that target specific sites on the dendritic tree may perform unique sets of computations
    • 

    corecore