48 research outputs found

    Identification of Reproduction-Specific Genes Associated with Maturation and Estrogen Exposure in a Marine Bivalve Mytilus edulis

    Get PDF
    Background: While it is established that vertebrate-like steroids, particularly estrogens (estradiol, estrone) and androgens (testosterone), are present in various tissues of molluscs, it is still unclear what role these play in reproductive endocrinology in such organisms. This is despite the significant commercial shellfishery interest in several bivalve species and their decline. Methodology/Principal Findings: Using suppression subtraction hybridisation of mussel gonad samples at two stages (early and mature) of gametogenesis and (in parallel) following controlled laboratory estrogen exposure, we isolate several differentially regulated genes including testis-specific kinases, vitelline lysin and envelope sequences. Conclusions: The differentially expressed mRNAs isolated provide evidence that mussels may be impacted by exogenous estrogen exposure

    Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage

    Get PDF
    The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants, determined from the SNP arrays, also appeared sporadically. No common variants related to culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome 20q11.21, including three genes expressed in human ES cells, ID1, BCL2L1 and HM13, occurred in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells

    Monitoring differentiation of human embryonic stem cells using real-time PCR

    No full text
    There is a general lack of rapid, sensitive, and quantitative methods for the detection of differentiating human embryonic stem cells (hESCs). Using light microscopy and immunohistochemistry, we observed that morphological changes of differentiating hESCs precede any major alterations in the expression of several commonly used hESC markers (SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, Oct-4, and Nanog). In an attempt to quantify the changes during stochastic differentiation of hESCs, we developed a robust and sensitive multimarker quantitative real-time polymerase chain reaction (QPCR) method. To maximize the sensitivity of the method, we measured the expression of up- and downregulated genes before and after differentiation of the hESCs. Out of the 12 genes assayed, we found it clearly sufficient to determine the relative differentiation state of the cells by calculating a collective expression index based on the mRNA levels of Oct-4, Nanog, Cripto, and (x-fetoprotein. We evaluated the method using different hESC lines maintained in either feeder-dependent or feeder-free culture conditions. The QPCR method is very flexible, and by appropriately selecting reporter genes, the method can be designed for various applications. The combination of QPCR with hESC-based technologies opens novel avenues for high-throughput analysis of hESCs in, for example, pharmacological and cytotoxicity screening. STEM CELLS 2005;23:1460-1467

    Plasma activity of individual coagulation factors, hemodilution and blood loss after cardiac surgery: A prospective observational study

    No full text
    Background: Hemodilution and consumption of coagulation factors during cardiopulmonary bypass has been suggested to contribute to bleeding complications after cardiac surgery. The aim was to describe the activity of individual coagulation factors after CABG in relation to hemodilution and postoperative bleeding. Materials and Methods: Plasma concentrations of fibrinogen and plasma activity of FII, FV, FVII, FVIII, FIX, FX, FXI and FXIII adjusted for hemodilution were analysed in 57 CABG patients before, and 2 h and 24 h after surgery. Postoperative bleeding was registered and correlations to coagulation factor activity were calculated. Results: Adjusted plasma concentration of fibrinogen (-14± 6%), and plasma activity of FII (-9 ± 6%), FV (-13± 8%), FX (-13 ± 7%) and FXIII (-9 ± 14%) were reduced two hours after surgery compared to baseline (all p b 0.001). FVII (+3 ± 12%, p = 0.34) and FXI (+1 ± 19%, p = 0.50) were unchanged, while FVIII (+23± 44%, p = 0.006) and FIX (+ 23 ± 17%, p b 0.001) increased. Twenty-four hours after surgery fibrinogen (+ 45 ± 27%), FVIII (+ 93 ± 66%) and FIX (+ 33 ± 26%) were all increased (all p b 0.001), while FVII (-37 ± 14%, p b 0.001), FXI (-4 ± 18%, p = 0.02) and FXIII (-6 ± 15%, p = 0.004) were decreased. Median postoperative blood loss was 380 ml/12 h. There were significant inverse correlations between postoperative blood loss and fibrinogen concentration 2 h after surgery (r = -0.33, p = 0.019) and between postoperative blood loss and pre-and postoperative FXIII activity (r = -0.34, p = 0.009 and r = -0.41, p = 0.003, respectively), but not between blood loss and any of the other factors. Conclusions: There is a marked dissociation in plasma activity of individual coagulation factors after CABG. Plasma concentration of fibrinogen and factor XIII activity correlates inversely to postoperative blood loss after CABG

    Human Embryonic Mesodermal Progenitors Highly Resemble Human Mesenchymal Stem Cells and Display High Potential for Tissue Engineering Applications

    No full text
    Adult stem cells, such as human mesenchymal stem cells (hMSCs), show limited proliferative capacity and, after long-term culture, lose their differentiation capacity and are therefore not an optimal cell source for tissue engineering. Human embryonic stem cells (hESCs) constitute an important new resource in this field, but one major drawback is the risk of tumor formation in the recipients. One alternative is to use progenitor cells derived from hESCs which are more lineage restricted but do not form teratomas. We have recently derived a cell line from hESCs denoted human embryonic stem cell-derived mesodermal progenitors (hESMPs) and here, using genome wide microarray analysis, report that the process of hES-MPs derivation results in a significantly altered expression of hESCs characteristic genes to an expression level highly similar to that of hMSCs. However, hES-MPs displayed a significantly higher proliferative capacity and longer telomeres. Interestingly, the hES-MPs also demonstrated a lower expression of HLA class II proteins before and after interferon-γ treatment, indicating that these cells may somewhat be immunoprivileged and potentially used for HLA-incompatible transplantation. The hES-MPs are thus an appealing alternative to hMSCs in tissue engineering applications and stem cell-based therapies for mesodermal tissues

    Clonal derivation and characterization of human embryonic stem cell lines

    No full text
    Human embryonic stem cells (hESC) are isolated as clusters of cells from the inner cell mass of blastocysts and thus should formally be considered as heterogeneous cell populations. Homogenous hESC cultures can be obtained through subcloning. Here, we report the clonal derivation and characterization of two new hESC lines from the parental cell line SA002 and the previously clonally derived cell line AS034.1, respectively. The hESC line SA002 was recently reported to have an abnormal karyotype (trisomy 13), but within this population of cells we observed rare individual cells with an apparent normal karyotype. At a cloning efficiency of 5%, we established 33 subclones from SA002, out of which one had a diploid karyotype and this subline was designated SA002.5. From AS034.1 we established one reclone designated AS034. 1.1 at a cloning efficiency of 0.1%. These two novel sublines express cell surface markers indicative of undifferentiated hESC (SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81), Oct-4, alkaline phosphatase, and they display high telomerase activity. In addition, the cells are pluripotent and form derivatives of all three embryonic germ layers in vitro as well as in vivo. These results, together with the clonal character of SA002.5 and AS034. 1.1 make these homogenous cell populations very useful for hESC based applications in drug development and toxicity testing. In addition, the combination of the parental trisomic hESC line SA002 and the diploid subclone SA002.5 provides a unique experimental system to study the molecular mechanisms underlying the pathologies associated with trisomy 13. (c) 2005 Elsevier B.V. All rights reserved

    A duplicated motif controls assembly of zona pellucida domain proteins

    No full text
    Many secreted eukaryotic glycoproteins that play fundamental roles in development, hearing, immunity, and cancer polymerize into filaments and extracellular matrices through zona pellucida (ZP) domains. ZP domain proteins are synthesized as precursors containing C-terminal propeptides that are cleaved at conserved sites. However, the consequences of this processing and the mechanism by which nascent proteins assemble are unclear. By microinjection of mutated DNA constructs into growing oocytes and mammalian cell transfection, we have identified a conserved duplicated motif [EHP (external hydrophobic patch)/IHP (internal hydrophobic patch)] regulating the assembly of mouse ZP proteins. Whereas the transmembrane domain (TMD) of ZP3 can be functionally replaced by an unrelated TMD, mutations in either EHP or IHP do not hinder secretion of full-length ZP3 but completely abolish its assembly. Because mutants truncated before the TMD are not processed, we conclude that the conserved TMD of mammalian ZP proteins does not engage them in specific interactions but is essential for C-terminal processing. Cleavage of ZP precursors results in loss of the EHP, thereby activating secreted polypeptides to assemble by using the IHP within the ZP domain. Taken together, these findings suggest a general mechanism for assembly of ZP domain proteins
    corecore