52 research outputs found

    Entropy Generation Analysis of Desalination Technologies

    Get PDF
    Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.King Fahd University of Petroleum and MineralsCenter for Clean Water and Clean Energy at MI

    A Prospective Study of Pravastatin in the Elderly at Risk (PROSPER): Screening Experience and Baseline Characteristics

    Get PDF
    BACKGROUND: PROSPER was designed to investigate the benefits of treatment with pravastatin in elderly patients for whom a typical doctor might consider the prescription of statin therapy to be a realistic option. METHODS: The PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) is a randomised, double blind, placebo-controlled trial to test the hypothesis that treatment with pravastatin (40 mg/day) will reduce the risk of coronary heart disease death, non-fatal myocardial infarction, and fatal or non-fatal stroke in elderly men and women with pre-existing vascular disease or with significant risk of developing this condition. RESULTS: In Scotland, Ireland, and the Netherlands, 23,770 individuals were screened, and 5,804 subjects (2,804 men and 3,000 women), aged 70 to 82 years (average 75 years) and with baseline cholesterol 4.0–9.0 mmol/l, were randomised. Randomised subjects had similar distributions with respect to age, blood pressure, and body mass index when compared to the entire group of screenees, but had a higher prevalence of smoking, diabetes, hypertension, and a history of vascular disease. The average total cholesterol level at baseline was 5.4 mmol/l (men) and 6.0 mmol/l (women). CONCLUSIONS: Compared with previous prevention trials of cholesterol-lowering drugs, the PROSPER cohort is significantly older and for the first time includes a majority of women. The study, having achieved its initial goal of recruiting more than 5,500 elderly high-risk men and women, aims to complete all final subject follow-up visits in the first half of 2002 with the main results being available in the fourth quarter of 2002

    Novel study designs to investigate the placebo response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigating the size and mechanisms of the placebo response in clinical trials have relied on experimental procedures that simulate the double-blind randomized placebo-controlled design. However, as the conventional design is thought to elucidate drug rather than placebo actions, different methodological procedures are needed for the placebo response.</p> <p>Methods</p> <p>We reviewed the respective literature for trials designs that may be used to elucidate the size of the placebo response and the mechanisms associated with it.</p> <p>Results</p> <p>In general, this can be done by either manipulation the information provided to the subjects, or by manipulation the timing of the drug applied. Two examples of each strategy are discussed: the "balanced placebo design" (BDP) and the "balanced cross-over design" (BCD) and their variants are based on false information, while the "hidden treatment" (HT) and the ""delayed response test" (DRT) are based on manipulating the time of drug action. Since most such approaches include deception or incomplete information of the subjects they are suitable for patient only with authorized deception.</p> <p>Conclusion</p> <p>Both manipulating the information provided to subjects (BDP, DCD) or manipulating the timing of drug application (HT, DRT) allows overcoming some of the restrictions of conventional drug trials in the assessment of the placebo response, but they are feasible mostly in healthy subjects for ethical reasons.</p

    Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer

    Get PDF
    Background Genome-wide association studies (GWAS) identify associations of individual single-nucleotide polymorphisms (SNPs) with cancer risk but usually only explain a fraction of the inherited variability. Pathway analysis of genetic variants is a powerful tool to identify networks of susceptibility genes. Methods We conducted a large agnostic pathway-based meta-analysis of GWAS data using the summary-based adaptive rank truncated product method to identify gene sets and pathways associated with pancreatic ductal adenocarcinoma (PDAC) in 9040 cases and 12 496 controls. We performed expression quantitative trait loci (eQTL) analysis and functional annotation of the top SNPs in genes contributing to the top associated pathways and gene sets. All statistical tests were two-sided. Results We identified 14 pathways and gene sets associated with PDAC at a false discovery rate of less than 0.05. After Bonferroni correction (P Conclusion Our agnostic pathway and gene set analysis integrated with functional annotation and eQTL analysis provides insight into genes and pathways that may be biologically relevant for risk of PDAC, including those not previously identified.Peer reviewe

    A Model for the Evolution of Biological Specificity: a Cross-Reacting DNA-Binding Protein Causes Plasmid Incompatibility

    No full text
    Few biological systems permit rigorous testing of how changes in DNA sequence give rise to adaptive phenotypes. In this study, we sought a simplified experimental system with a detailed understanding of the genotype-to-phenotype relationship that could be altered by environmental perturbations. We focused on plasmid fitness, i.e., the ability of plasmids to be stably maintained in a bacterial population, which is dictated by the plasmid's replication and segregation machinery. Although plasmid replication depends on host proteins, the type II plasmid partitioning (Par) machinery is entirely plasmid encoded and relies solely on three components: parC, a centromere-like DNA sequence, ParR, a DNA-binding protein that interacts with parC, and ParM, which forms actin-like filaments that push two plasmids away from each other at cell division. Interactions between the Par operons of two related plasmids can cause incompatibility and the reduced transmission of one or both plasmids. We have identified segregation-dependent plasmid incompatibility between the highly divergent Par operons of plasmids pB171 and pCP301. Genetic and biochemical studies revealed that the incompatibility is due to the functional promiscuity of the DNA-binding protein ParR(pB171), which interacts with both parC DNA sequences to direct plasmid segregation, indicating that the lack of DNA binding specificity is detrimental to plasmid fitness in this environment. This study therefore successfully utilized plasmid segregation to dissect the molecular interactions between genotype, phenotype, and fitness
    • …
    corecore