34 research outputs found

    Mesoscale modeling of smoke transport from equatorial Southeast Asian Maritime Continent to the Philippines: First comparison of ensemble analysis with in situ observations

    Full text link
    Atmospheric transport of smoke from equatorial Southeast Asian Maritime Continent (Indonesia, Singapore, and Malaysia) to the Philippines was recently verified by the first‐ever measurement of aerosol composition in the region of the Sulu Sea from a research vessel named Vasco. However, numerical modeling of such transport can have large uncertainties due to the lack of observations for parameterization schemes and for describing fire emission and meteorology in this region. These uncertainties are analyzed here, for the first time, with an ensemble of 24 Weather Research and Forecasting model with Chemistry (WRF‐Chem) simulations. The ensemble reproduces the time series of observed surface nonsea‐salt PM2.5 concentrations observed from the Vasco vessel during 17–30 September 2011 and overall agrees with satellite (Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and Moderate Resolution Imaging Spectroradiometer (MODIS)) and Aerosol Robotic Network (AERONET) data. The difference of meteorology between National Centers for Environmental Prediction (NCEP’s) Final (FNL) and European Center for Medium range Weather Forecasting (ECMWF’s) ERA renders the biggest spread in the ensemble (up to 20 Όg m−3 or 200% in surface PM2.5), with FNL showing systematically superior results. The second biggest uncertainty is from fire emissions; the 2 day maximum Fire Locating and Modelling of Burning Emissions (FLAMBE) emission is superior than the instantaneous one. While Grell‐Devenyi (G3) and Betts‐Miller‐Janjić cumulus schemes only produce a difference of 3 Όg m−3 of surface PM2.5 over the Sulu Sea, the ensemble mean agrees best with Climate Prediction Center (CPC) MORPHing (CMORPH)’s spatial distribution of precipitation. Simulation with FNL‐G3, 2 day maximum FLAMBE, and 800 m injection height outperforms other ensemble members. Finally, the global transport model (Navy Aerosol Analysis and Prediction System (NAAPS)) outperforms all WRF‐Chem simulations in describing smoke transport on 20 September 2011, suggesting the challenges to model tropical meteorology at mesoscale and finer scale.Plain Language SummaryIt is well known that smoke particles from fires in Indonesia, Singapore, and Malaysia can affect each other’s air quality. Less known and surely not well documented is the transport of smoke particles from these countries to the Philippines. Here we use the first‐ever measurements took nearby the coastal of the Philippines to analyze an ensemble of 24 WRF‐Chem simulations of smoke transport. Because of persistent cloud cover and the complexity of meteorology, mesoscale modeling of smoke transport in these regions normally has large uncertainties. We show these uncertainties are caused first by meteorology and then by fire emissions. We further show that models with finer resolution not necessarily produce better results.Key PointsFirst mesoscale modeling of smoke transport from equatorial Southeast Asian Maritime Continent to the PhilippinesEnsemble analysis of modeling uncertainties with first‐ever measurement of aerosol composition data in the region of the Sulu SeaMeteorological initial and boundary conditions, not cumulus parametrization and fire emission, have the largest uncertainty in the simulationPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137624/1/jgrd53809_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137624/2/jgrd53809.pd

    The 2013 Rim Fire: Implications for Predicting Extreme Fire Spread, Pyroconvection, and Smoke Emissions

    Get PDF
    Abstract The 2013 Rim Fire, which burned over 104,000 ha, was one of the most severe fire events in California's history, in terms of its rapid growth, intensity, overall size, and persistent smoke plume. At least two large pyrocumulonimbus (pyroCb) events were observed, allowing smoke particles to extend through the upper troposphere over a large portion of the Pacific Northwest. However, the most extreme fire spread was observed on days without pyroCb activity or significant regional convection. A diverse archive of ground, airborne, and satellite data collected during the Rim Fire provides a unique opportunity to examine the conditions required for both extreme spread events and pyroCb development. Results highlight the importance of upper-level and nocturnal meteorology, as well as the limitations of traditional fire weather indices. The Rim Fire dataset also allows for a detailed examination of conflicting hypotheses surrounding the primary source of moisture during pyroCb development. All pyroCbs were associated with conditions very similar to those that produce dry thunderstorms. The current suite of automated forecasting applications predict only general trends in fire behavior, and specifically do not predict 1) extreme fire spread events and 2) injection of smoke to high altitudes. While these two exceptions are related, analysis of the Rim Fire shows that they are not predicted by the same set of conditions and variables. The combination of numerical weather prediction data and satellite observations exhibits great potential for improving automated regional-scale forecasts of fire behavior and smoke emissions

    Relationship Between Aerosol Optical Depth and Particulate Matter Over Singapore: Effects of Aerosol Vertical Distributions

    Get PDF
    As part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite- and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.5 microns (PM2.5) for air quality applications are investigated. When MPLNET-derived aerosol scale heights are applied to normalize AOD for comparison with surface PM2.5 data, the empirical relationships are shown to improve with an increased 11%, 10% and 5% in explained variances, for AERONET, MODIS and NAAPS respectively. The ratios of root mean square errors to standard deviations for the relationships also show corresponding improvements of 8%, 6% and 2%. Aerosol scale heights are observed to be bimodal with a mode below and another above the strongly-capped/deep near-surface layer (SCD; 0-1.35 km). Aerosol extinctions within the SCD layer are well-correlated with surface PM2.5 concentrations, possibly due to strong vertical mixing in the region

    Sensitivity of Mesoscale Modeling of Smoke Direct Radiative Effect to the Emission Inventory: a Case Study in Northern Sub-Saharan African Region

    Get PDF
    An ensemble approach is used to examine the sensitivity of smoke loading and smoke direct radiative effect in the atmosphere to uncertainties in smoke emission estimates. Seven different fire emission inventories are applied independently to WRF-Chem model (v3.5) with the same model configuration (excluding dust and other emission sources) over the northern sub-Saharan African (NSSA) biomass-burning region. Results for November and February 2010 are analyzed, respectively representing the start and end of the biomass burning season in the study region. For February 2010, estimates of total smoke emission vary by a factor of 12, but only differences by factors of 7 or less are found in the simulated regional (15degW-42degE, 13degS-17degN) and monthly averages of column PM(sub 2.5) loading, surface PM(sub 2.5) concentration, aerosol optical depth (AOD), smoke radiative forcing at the top-of-atmosphere and at the surface, and air temperature at 2 m and at 700 hPa. The smaller differences in these simulated variables may reflect the atmospheric diffusion and deposition effects to dampen the large difference in smoke emissions that are highly concentrated in areas much smaller than the regional domain of the study. Indeed, at the local scale, large differences (up to a factor of 33) persist in simulated smoke-related variables and radiative effects including semi-direct effect. Similar results are also found for November 2010, despite differences in meteorology and fire activity. Hence, biomass burning emission uncertainties have a large influence on the reliability of model simulations of atmospheric aerosol loading, transport, and radiative impacts, and this influence is largest at local and hourly-to-daily scales. Accurate quantification of smoke effects on regional climate and air quality requires further reduction of emission uncertainties, particularly for regions of high fire concentrations such as NSSA

    Sensitivity of Mesoscale Modeling of Smoke Direct Radiative Effect to the Emission Inventory: A Case Study in Northern Sub-Saharan African Region

    Get PDF
    An ensemble approach is used to examine the sensitivity of smoke loading and smoke direct radiative effect in the atmosphere to uncertainties in smoke emission estimates. Seven different fire emission inventories are applied independently to WRF-Chem model (v3.5) with the same model configuration (excluding dust and other emission sources) over the northern sub-Saharan African (NSSA) biomass-burning region. Results for November and February 2010 are analyzed, respectively representing the start and end of the biomass burning season in the study region. For February 2010, estimates of total smoke emission vary by a factor of 12, but only differences by factors of 7 or less are found in the simulated regional (15°W–42°E, 13°S–17°N) and monthly averages of column PM2.5 loading, surface PM2.5 concentration, aerosol optical depth (AOD), smoke radiative forcing at the top-of-atmosphere and at the surface, and air temperature at 2 m and at 700 hPa. The smaller differences in these simulated variables may reflect the atmospheric diffusion and deposition effects to dampen the large difference in smoke emissions that are highly concentrated in areas much smaller than the regional domain of the study. Indeed, at the local scale, large differences (up to a factor of 33) persist in simulated smoke-related variables and radiative effects including semi-direct effect. Similar results are also found for November 2010, despite differences in meteorology and fire activity. Hence, biomass burning emission uncertainties have a large influence on the reliability of model simulations of atmospheric aerosol loading, transport, and radiative impacts, and this influence is largest at local and hourly-to-daily scales. Accurate quantification of smoke effects on regional climate and air quality requires further reduction of emission uncertainties, particularly for regions of high fire concentrations such as NSSA

    Applying Advanced Ground-Based Remote Sensing in the Southeast Asian Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling

    Get PDF
    This work describes some of the most extensive ground-based observations of the aerosol profile collected in Southeast Asia to date, highlighting the challenges in simulating these observations with amesoscale perspective. An 84-hWRFModel coupled with chemistry (WRF-Chem)mesoscale simulation of smoke particle transport at Kuching, Malaysia, in the southern Maritime Continent of Southeast Asia is evaluated relative to a unique collection of continuous ground-based lidar, sun photometer, and 4-h radiosonde profiling. The period was marked by relatively dry conditions, allowing smoke layers transported to the site unperturbed by wet deposition to be common regionally. The model depiction is reasonable overall. Core thermodynamics, including land/seabreeze structure, are well resolved. Total model smoke extinction and, by proxy, mass concentration are low relative to observation. Smoke emissions source products are likely low because of undersampling of fires in infrared sun-synchronous satellite products, which is exacerbated regionally by endemic low-level cloud cover. Differences are identified between the model mass profile and the lidar profile, particularly during periods of afternoon convective mixing. A static smoke mass injection height parameterized for this study potentially influences this result. The model does not resolve the convective mixing of aerosol particles into the lower free troposphere or the enhancement of near-surface extinction from nighttime cooling and hygroscopic effects

    Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Get PDF
    Abstract. The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3–12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds

    An 11-Year Global Gridded Aerosol Optical Thickness Reanalysis (v1.0) for Atmospheric and Climate Sciences

    Get PDF
    While stand alone satellite and model aerosol products see wide utilization, there is a significant need in numerous atmospheric and climate applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003–2013 global 1 × 1 ◩ and 6-hourly modal aerosol optical thickness (AOT) reanalysis product. This data set can be applied to basic and applied Earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine- and coarse-mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite-retrieved precipitation, rather than the model field. The final reanalyzed fine- and coarse-mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine- and coarse-mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the aerosol reanalysis can be applied or fused with other model or remote sensing products. Finally, the reanalysis is evaluated in comparison with other available studies of aerosol trends, and the implications of this comparison are discussed

    Model comparisons for estimating carbon emissions from North American wildland fire

    Get PDF
    Research activities focused on estimating the direct emissions of carbon from wildland fires across North America are reviewed as part of the North American Carbon Program disturbance synthesis. A comparison of methods to estimate the loss of carbon from the terrestrial biosphere to the atmosphere from wildland fires is presented. Published studies on emissions from recent and historic time periods and five specific cases are summarized, and new emissions estimates are made using contemporary methods for a set of specific fire events. Results from as many as six terrestrial models are compared. We find that methods generally produce similar results within each case, but estimates vary based on site location, vegetation (fuel) type, and fire weather. Area normalized emissions range from 0.23 kg C m−2 for shrubland sites in southern California/NW Mexico to as high as 6.0 kg C m−2 in northern conifer forests. Total emissions range from 0.23 to 1.6 Tg C for a set of 2003 fires in chaparral-dominated landscapes of California to 3.9 to 6.2 Tg C in the dense conifer forests of western Oregon. While the results from models do not always agree, variations can be attributed to differences in model assumptions and methods, including the treatment of canopy consumption and methods to account for changes in fuel moisture, one of the main drivers of variability in fire emissions. From our review and synthesis, we identify key uncertainties and areas of improvement for understanding the magnitude and spatial-temporal patterns of pyrogenic carbon emissions across North America
    corecore