22 research outputs found

    Thermal Characterization of Liquid Samples with Three-Dimensional On-Chip Micro Calorimeter

    Get PDF
    This thesis presents a three dimensional on-chip microfabricated calorimeter (μ-calorimeter) to extract thermal diffusivity and specific heat capacity of liquid samples. These thermal properties are used to understand thermal reaction behavior, obtain information of stability for reactant molecules, and characterize a material. Thermally characterized solvents can be utilized to investigate a solute. The μ-calorimeter introduced in this work has 3D wafer-scale structure. The μ-calorimeter consists of a reaction chamber, a nickel heater, and a resistance temperature detector (RTD) sensor. The reaction chamber enables analysis of 200 nl liquid samples. Also, its enclosed structure prevents liquid sample evaporation during an experiment. The heater and the sensor are integrated on the top and bottom sides of the reaction chamber. The heat flux travels directly through a liquid sample from the heater to the sensor with this configuration. The heat penetration time measurement and thermal wave analysis (TWA) are used to measure thermal diffusivity and specific heat respectively. The heat penetration time measurement is the method that measures the heat penetration time through the liquid sample. Depending on the thermal diffusivity of the liquid sample and the heat flux distance, the heat penetration time alters. Since the geometry of the chamber is known, measuring heat penetration time allows detection of the thermal diffusivity of the liquid sample. The TWA is an AC calorimetry method. When an AC voltage of angular frequency, 2ω, is given to the heater, heat is generated by Joule heating at 2ω frequency. The heat capacitance of the sample can be extracted by measuring this 2ω component from the heater. Based on the experimental work of μ-calorimeter, a new measurement system for thermal analysis is introduced. The new system is available to minimize the distance between heater and sensor and facilitate user friendly operation

    A Novel On-chip Three-dimensional Micromachined Calorimeter with Fully Enclosed and Suspended Thin-film Chamber for Thermal Characterization of Liquid Samples

    Get PDF
    A microfabricated calorimeter (μ-calorimeter) with an enclosed reaction chamber is presented. The 3D micromachined reaction chamber is capable of analyzing liquid samples with volume of 200 nl. The thin film low-stress silicon nitride membrane is used to reduce thermal mass of the calorimeter and increase the sensitivity of system. The μ-calorimeter has been designed to perform DC and AC calorimetry, thermal wave analysis, and differential scanning calorimetry. The μ-calorimeter fabricated with an integrated heater and a temperature sensor on opposite sides of the reaction chamber allows to perform thermal diffusivity and specific heat measurements on liquid samples with same device. Measurement results for diffusivity and heat capacitance using time delay method and thermal wave analysis are presented

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Simvastatin attenuates tibial bone loss in rats with type 1 diabetes and periodontitis

    No full text
    Abstract Background Diabetes induces long bone loss and aggravation of periodontitis-induced alveolar bone loss. Simvastatin (SIM), which is a lipid-lowering agent is known to have an anabolic effect on bone. Therefore, we investigated effect of SIM on tibial and alveolar bone loss in type 1 diabetic rats with periodontitis. Methods Rats were divided into control (C), diabetes with periodontitis (DP), and diabetes with periodontitis treated with SIM (DPS) groups. DP and DPS groups were intravenously injected with streptozotocin (50 mg/kg), and C group was injected with citrate buffer. Seven days later (day 0), periodontitis was induced by ligatures of mandibular first molars. DP and DPS groups were orally administered vehicle or SIM (30 mg/kg) from day 0 to days 3, 10, or 20. Alveolar and tibial bone loss was measured using histological and m-CT analysis alone or in combination. Osteoclast number and sclerostin-positive osteocytes in tibiae were evaluated by tartrate-resistant acid phosphatase and immunohistochemical staining, respectively. Glucose, triglyceride (TG), cholesterol (CHO), and low-density lipoprotein (LDL) were evaluated. Results Consistent with diabetes induction, the DP group showed higher glucose and TG levels at all timepoints and higher CHO levels on day 20 than C group. Compared to the DP group, the DPS group exhibited reduced levels of glucose (day 3), TG (days 10 and 20), CHO, and LDL levels (day 20). Bone loss analysis revealed that the DP group had lower bone volume fraction, bone mineral density, bone surface density, and trabecular number in tibiae than C group at all timepoints. Interestingly, the DPS group exhibited elevation of these indices at early stages compared to the DP group. The DPS group showed reduction of osteoclasts (day 3) and sclerostin-positive osteocytes (days 3 and 20) compared with the DP group. There was no difference in alveolar bone loss between DP and DPS groups. Conclusions These results suggest that SIM attenuates tibial, but not alveolar bone loss in type 1 diabetic rats with periodontitis. Moreover, attenuation of tibial bone loss by SIM may be related to inhibition of osteoclast formation and reduction of sclerostin expression

    Predicting clinical outcome with phenotypic clusters using quantitative CT fibrosis and emphysema features in patients with idiopathic pulmonary fibrosis.

    No full text
    BackgroundThe clinical course of IPF varies. This study sought to identify phenotyping with quantitative computed tomography (CT) fibrosis and emphysema features using a cluster analysis and to assess prognostic impact among identified clusters in patient with idiopathic pulmonary fibrosis (IPF). Furthermore, we evaluated the impact of fibrosis and emphysema on lung function with development of a descriptive formula.MethodsThis retrospective study included 205 patients with IPF. A texture-based automated system was used to quantify areas of normal, emphysema, ground-glass opacity, reticulation, consolidation, and honeycombing. Emphysema index was obtained by calculating the percentage of low attenuation area lower than -950HU. We used quantitative CT features and clinical features for clusters and assessed the association with prognosis. A formula was derived using fibrotic score and emphysema index on quantitative CT.ResultsThree clusters were identified in IPF patients using a quantitative CT score and clinical values. Prognosis was better in cluster1, with a low extent of fibrosis and emphysema with high forced vital capacity (FVC) than cluster2 and cluster3 with higher fibrotic score and emphysema (p = 0.046, and p = 0.026). In the developed formula [1.5670-fibrotic score(%)*0.04737-emphysema index*0.00304], a score greater ≥ 0 indicates coexisting of pulmonary fibrosis and emphysema at a significant extent despite of normal spirometric result.ConclusionsCluster analysis identified distinct phenotypes, which predicted prognosis of clinical outcome. Formula using quantitative CT values is useful to assess extent of pulmonary fibrosis and emphysema with normal lung function in patients with IPF

    Tumor necrosis factor-α antagonist diminishes osteocytic RANKL and sclerostin expression in diabetes rats with periodontitis.

    No full text
    Type 1 diabetes with periodontitis shows elevated TNF-α expression. Tumor necrosis factor (TNF)-α stimulates the expression of receptor activator of nuclear factor-κB ligand (RANKL) and sclerostin. The objective of this study was to determine the effect of TNF-α expression of osteocytic RANKL and sclerostin in type 1 diabetes rats with periodontitis using infliximab (IFX), a TNF-α antagonist. Rats were divided into two timepoint groups: day 3 and day 20. Each timepoint group was then divided into four subgroups: 1) control (C, n = 6 for each time point); 2) periodontitis (P, n = 6 for each time point); 3) diabetes with periodontitis (DP, n = 8 for each time point); and 4) diabetes with periodontitis treated with IFX (DP+IFX, n = 8 for each time point). To induce type 1 diabetes, rats were injected with streptozotocin (50 mg/kg dissolved in 0.1 M citrate buffer). Periodontitis was then induced by ligature of the mandibular first molars at day 7 after STZ injection (day 0). IFX was administered once for the 3 day group (on day 0) and twice for the 20 day group (on days 7 and 14). The DP group showed greater alveolar bone loss than the P group on day 20 (P = 0.020). On day 3, higher osteoclast formation and RANKL-positive osteocytes in P group (P = 0.000 and P = 0.011, respectively) and DP group (P = 0.006 and P = 0.017, respectively) than those in C group were observed. However, there was no significant difference in osteoclast formation or RANKL-positive osteocytes between P and DP groups. The DP+IFX group exhibited lower alveolar bone loss (P = 0.041), osteoclast formation (P = 0.019), and RANKL-positive osteocytes (P = 0.009) than that of the DP group. On day 20, DP group showed a lower osteoid area (P = 0.001) and more sclerostin-positive osteocytes (P = 0.000) than P group. On days 3 and 20, the DP+IFX group showed more osteoid area (P = 0.048 and 0.040, respectively) but lower sclerostin-positive osteocytes (both P = 0.000) than DP group. Taken together, these results suggest that TNF-α antagonist can diminish osteocytic RANKL/sclerostin expression and osteoclast formation, eventually recovering osteoid formation. Therefore, TNF-α might mediate alveolar bone loss via inducing expression of osteocytic RANKL and sclerostin in type 1 diabetes rats with periodontitis

    Intermittent PTH administration improves alveolar bone formation in type 1 diabetic rats with periodontitis

    No full text
    Abstract Background Periodontitis is an infectious disease that manifests as alveolar bone loss surrounding the roots of teeth. Diabetes aggravates periodontitis-induced alveolar bone loss via suppression of bone formation. Intermittent parathyroid hormone (PTH) administration displays an anabolic effect on bone. In this study, we investigated the effect of intermittent PTH administration on alveolar bone loss in type 1 diabetic rats with periodontitis. Methods Rats were divided into control (C), periodontitis (P), periodontitis treated with PTH (P + PTH), diabetes with periodontitis (DP), and diabetes with periodontitis treated with PTH (DP + PTH) groups. To induce type 1 diabetes, rats were injected with streptozotocin and periodontitis was induced bilaterally by applying ligatures to the mandibular first molars for 30 days. During the experimental period, the P + PTH and DP + PTH groups were subcutaneously injected with PTH (40 μg/kg) three times per week, whereas the C, P, and DP groups were injected with citrate buffer. To observe the mineralization of the alveolar bone, the DP and DP + PTH groups were injected with calcein on days 10 and 27, and with alizarin red on day 20. Thirty days after ligation, histological findings and fluorescence labeling were analyzed in the furcations of the mandibular first molars. Sclerostin-positive osteocytes were assessed by immunohistochemical analyses. Results The DP groups had smaller areas of alveolar bone than the other groups, and the DP + PTH group had a larger alveolar bone area than the DP group. The DP group had less osteoid formation than the C group, whereas the DP + PTH had greater osteoid formation than the DP group. Fluorescence labeling results revealed that the DP + PTH group had more mineral deposition on the alveolar bone than the DP group. The DP + PTH group exhibited lower percentage of sclerostin-positive osteocytes in alveolar bone than the DP group. Conclusions Intermittent PTH administration diminishes alveolar bone loss and sclerostin expression in osteocytes, but increases osteoid formation and mineralization, suggesting that intermittent PTH administration attenuates diabetes-aggravated alveolar bone loss by the induction of bone formation. PTH-induced bone formation may be related to the regulation of osteocytic sclerostin expression in type 1 diabetic rats with periodontitis
    corecore