120 research outputs found

    Synergistic effect of low dose Cyclosporine A and human interleukin 10 overexpression on acute rejection in rat lung allotransplantation

    Get PDF
    Objective: Electroporation mediated transfer of plasmid DNA into peripheral muscle results in high transfection efficiency. The aim of this study was to investigate the effect of gene transfer of human IL-10 (hIL-10) into the tibialis anterior muscle (MTA) in combination with low dose Cyclosporine A (CsA) on acute rejection of lung allografts in the rat. Methods: Lung allotransplantation was performed from male BN donor to male Fisher F344 rats. Gene transfer was achieved by intramuscular injection into the MTA of the recipient followed by electroporation (4×20ms impulses at 200V/cm) 24h prior to the transplantation. Group A (n=5) received CsA (2.5mg/kg bw ip) for 5 days post-transplant and group B (n=5) 2.5μg of PCIK hIL-10 (plasmid expression vector containing human CMV immediate early gene promoter and enhancer) and a low dose CsA (2.5mg/kg bw i.p.). Graft function was assessed by blood gas at day 5 after exclusion of the native lung. Animals were sacrificed and blood was drawn to measure serum hIL-10 levels (ELISA) and tissue was sampled for histological grading of rejection. Results: Local expression of hIL-10 was confirmed at the mRNA level by in situ hybridization. All group A control animals showed severe signs of rejection. At day 5 all grafts in group B showed good gas exchange mean PaO2 233±123mmHg, vs 44±8mmHg in group A. Histological examination revealed moderate to severe rejection in all animals in group A (IIIB, ISHLT) in contrast to low moderate rejection in group B (II-IIIA). hIL-10 serum levels on day 5 were 14±7pg/ml in group B vs. 0 in group A. Conclusions: Electroporation mediated hIL-10 overexpression in a peripheral muscle of the recipient in combination with low dose CsA reduces acute rejection in this model of rat lung allotransplantatio

    Synergistic effect of low dose Cyclosporine A and human interleukin 10 overexpression on acute rejection in rat lung allotransplantation

    Get PDF
    Objective: Electroporation mediated transfer of plasmid DNA into peripheral muscle results in high transfection efficiency. The aim of this study was to investigate the effect of gene transfer of human IL-10 (hIL-10) into the tibialis anterior muscle (MTA) in combination with low dose Cyclosporine A (CsA) on acute rejection of lung allografts in the rat. Methods: Lung allotransplantation was performed from male BN donor to male Fisher F344 rats. Gene transfer was achieved by intramuscular injection into the MTA of the recipient followed by electroporation (4×20ms impulses at 200V/cm) 24h prior to the transplantation. Group A (n=5) received CsA (2.5mg/kg bw ip) for 5 days post-transplant and group B (n=5) 2.5μg of PCIK hIL-10 (plasmid expression vector containing human CMV immediate early gene promoter and enhancer) and a low dose CsA (2.5mg/kg bw i.p.). Graft function was assessed by blood gas at day 5 after exclusion of the native lung. Animals were sacrificed and blood was drawn to measure serum hIL-10 levels (ELISA) and tissue was sampled for histological grading of rejection. Results: Local expression of hIL-10 was confirmed at the mRNA level by in situ hybridization. All group A control animals showed severe signs of rejection. At day 5 all grafts in group B showed good gas exchange mean PaO2 233±123mmHg, vs 44±8mmHg in group A. Histological examination revealed moderate to severe rejection in all animals in group A (IIIB, ISHLT) in contrast to low moderate rejection in group B (II–IIIA). hIL-10 serum levels on day 5 were 14±7pg/ml in group B vs. 0 in group A. Conclusions: Electroporation mediated hIL-10 overexpression in a peripheral muscle of the recipient in combination with low dose CsA reduces acute rejection in this model of rat lung allotransplantation

    Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest.

    Get PDF
    Abstract Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA\u27s Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p \u3c 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event

    Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion

    Get PDF
    This is the publisher’s final pdf. The published article is copyrighted by the Public Library of Science and can be found at: http://www.plosone.org/home.action.Background: Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. \ud \ud Methodology and Principal Findings: A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion") models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. \ud \ud Conclusion and Significance: Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level

    Direct RT-qPCR Assay for the Detection of SARS-CoV-2 in Saliva Samples

    Get PDF
    Since mid-2020 there have been complexities and difficulties in the standardisation and administration of nasopharyngeal swabs. Coupled with the variable and/or poor accuracy of lateral flow devices, this has led to increased societal ‘testing fatigue’ and reduced confidence in test results. Consequently, asymptomatic individuals have developed reluctance towards repeat testing, which remains the best way to monitor COVID-19 cases in the wider population. On the other hand, saliva-based PCR, a non-invasive, highly sensitive, and accurate test suitable for everyone, is gaining momentum as a straightforward and reliable means of detecting SARS-CoV-2 in symptomatic and asymptomatic individuals. Here, we provide an itemised list of the equipment and reagents involved in the process of sample submission, inactivation and analysis, as well as a detailed description of how each of these steps is performed

    Performance evaluation of a non-invasive one-step multiplex RT-qPCR assay for detection of SARS-CoV-2 direct from saliva

    Get PDF
    Polymerase chain reaction (PCR) has proven to be the gold-standard for SARS-CoV-2 detection in clinical settings. The most common approaches rely on nasopharyngeal specimens obtained from swabs, followed by RNA extraction, reverse transcription and quantitative PCR. Although swab-based PCR is sensitive, swabbing is invasive and unpleasant to administer, reducing patient compliance for regular testing and resulting in an increased risk of improper sampling. To overcome these obstacles, we developed a non-invasive one-step RT-qPCR assay performed directly on saliva specimens. The University of Nottingham Asymptomatic Testing Service protocol simplifies sample collection and bypasses the need for RNA extraction, or additives, thus helping to encourage more regular testing and reducing processing time and costs. We have evaluated the assay against the performance criteria specified by the UK regulatory bodies and attained accreditation (BS EN ISO/IEC 17,025:2017) for SARS-CoV-2 diagnostic testing by the United Kingdom Accreditation Service. We observed a sensitivity of 1 viral copy per microlitre of saliva, and demonstrated a concordance of > 99.4% between our results and those of other accredited testing facilities. We concluded that saliva is a stable medium that allows for a highly precise, repeatable, and robust testing method

    Response of cell wall composition and RNA-seq transcriptome to methyl-jasmonate in Brachypodium distachyon callus

    Get PDF
    Main conclusion: Methyl-jasmonate induces large increases in p-coumarate linked to arabinoxylan in Brachypodium and in abundance of GT61 and BAHD family transcripts consistent with a role in synthesis of this linkage. Jasmonic acid (JA) signalling is required for many stress responses in plants, inducing large changes in the transcriptome, including up-regulation of transcripts associated with lignification. However, less is known about the response to JA of grass cell walls and the monocot-specific features of arabinoxylan (AX) synthesis and acylation by ferulic acid (FA) and para-coumaric acid (pCA). Here, we show that methyl-jasmonate (MeJA) induces moderate increases in FA monomer, > 50% increases in FA dimers, and five–sixfold increases in pCA ester-linked to cell walls in Brachypodium callus. Direct measurement of arabinose acylated by pCA (Araf-pCA) indicated that most or all the increase in cell-wall pCA was due to pCA ester-linked to AX. Analysis of the RNA-seq transcriptome of the callus response showed that these cell-wall changes were accompanied by up-regulation of members of the GT61 and BAHD gene families implicated in AX decoration and acylation; two BAHD paralogues were among the most up-regulated cell-wall genes (seven and fivefold) after 24 h exposure to MeJA. Similar responses to JA of orthologous BAHD and GT61 transcripts are present in the RiceXPro public expression data set for rice seedlings, showing that they are not specific to Brachypodium or to callus. The large response of AX-pCA to MeJA may, therefore, indicate an important role for this linkage in response of primary cell walls of grasses to JA signalling

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • …
    corecore