84 research outputs found

    0171: Identification of complicated carotid plaques by adding functional fluorodeoxyglucose-positron emission tomographic imaging to morphological characteristics on computed tomographic angiography

    Get PDF
    AimWe developed a simple semi-quantitative score for the analysis of carotid plaques with FDG-PET-CTA imaging and tested whether adding functional imaging criteria extracted from FDG-PET imaging to morphological plaque characteristics identified with CTA might improve the detection of complicated plaques.Material and MethodsTwenty-eight patients scheduled for carotid endarterectomy were imaged with PET after injection of FDG followed by CTA of the supra-aortic trunks. Morphological aspects of plaques identified with CTA and metabolic activity quantified with FDG-PET (Tissue to Background ratio, TBR) were measured in the carotid segment with the highest degree of luminal stenosis and graded using semi-quantitative CT and PET scores. Combined score was calculated for each carotid artery by summing CT and PET scores. After carotid endarterectomy, vascular surgeons classified carotid plaques macroscopically as complicated or non-complicated.ResultsTwenty-eight carotid arteries were operated in 26 patients (24 symptomatic patients). Sixteen plaques were classified macroscopically as complicated. CTA detected hypodense regions and ulcerations in 81% and 25%, of complicated plaques, and in 33% and 0% of non-complicated plaques, respectively. Hypodense areas on CTA identified complicated plaques with a sensitivity of 87% and a specificity of 67%. Mean TBR with FDG-PET was measured at 2.2±0.4 in complicated plaques and 1.9±0.3 in non-complicated plaques (p<0.05). Values for the semi-quantitative score based on plaques characteristics with CTA and FDG-PET were 5.4±1.7 in complicated plaques and 2.5±2.4 in non-complicated plaques (p<0.05). A combined PET-CT score≥3 identified complicated plaques with a sensitivity of 100% and a specificity of 67%.ConclusionsAdding FDG-PET imaging criteria to morphological characteristics of plaques on CTA improved the sensitivity of the detection of complicated carotid plaques

    Peristrut microhemorrhages: a possible cause of in-stent neoatherosclerosis?

    Get PDF
    AbstractBackgroundIn-stent neoatherosclerosis is characterized by the delayed appearance of markers of atheroma in the subintima, but the pathophysiology underlying this new disease entity remains unclear.Methods and resultsWe collected 20 human coronary artery stents by removal from explanted hearts. The mean duration of stent implantation was 34 months. In all samples, neoatherosclerosis was detected, particularly in peristrut areas. It consisted of foam cells and cholesterol clefts, with or without calcification, associated with neovascularization. Iron and glycophorin-A were present in peristrut areas, as well as autofluorescent ceroids. Moreover, in response to neoatherosclerosis, tertiary lymphoid organs (tissue lymphoid clusters) often developed in the adventitia. Some of these features could be reproduced in an experimental carotid stenting model in rabbits fed a high-cholesterol diet. Foam cells were present in all samples, and peristrut red blood cells (RBCs) were also detected, as shown by iron deposits and Bandeiraea simplicifiola isolectin-B4 staining of RBC membranes. Finally, in silico models were used to evaluate the compliance mismatch between the rigid struts and the distensible arterial wall using finite element analysis. They show that stenting approximately doubles the local von Mises stress in the intimal layer.ConclusionsWe show here that stent implantation both in human and in rabbit arteries is characterized by local peristrut microhemorrhages and finally by both cholesterol accumulation and oxidation, triggering together in-stent neoatherosclerosis. Our data indicate that these processes are likely initiated by an increased mechanical stress due to the compliance mismatch between the rigid stent and the soft wall

    255 In vivo detection of non-occlusive thrombi in drug-eluting stents by scintigraphy and radio-labelled annexin V in a rabbit model

    Get PDF
    IntroductionThrombi in contact with non re-endothelialized stent struts associated with drug-eluting stent (DES) thrombosis. Hence, detection of thrombi in DES could help to evaluate the risk of DES thrombosis. Annexin V radio-labelled with 99mTechnetium (99mTc) is a radio-tracer with a high affinity for activated platelets.ObjectivesOur objectives were: 1) to develop an animal model of non-occlusive thrombosis of stents, 2) to evaluate the ability of annexin V 99mTc for the detection of in-stent thrombi using scintigraphy.MethodsRight carotid arteries of NZW rabbits (n=14) fed a high cholesterol diet were implanted with overlapping DES (n=7) or bare-metal stents (BMS; n=7). Four weeks after stent implantation, rabbits underwent a first scintigraphy 3 hours after injection of 200 MBq of radio-labelled annexin V 99mTc. At the end of the first scintigraphy, a suture was placed surgically proximal to the stented carotid arteries in order to induce a thrombus-prone flow limiting stenosis. Four days later, a second scintigraphy was performed. After the second scintigraphy, stents were excised, imaged ex vivo and then fixed for histological examination and scanning electron microscopy (SEM).ResultsActivities measured in vivo in the stented carotid arteries after injection of annexin V 99mTc were higher on the second scintigraphy after creation of a surgical stenosis as compared to the first scintigraphy (0.24 vs. 0.15 counts/pixel/MBq, respectively; p<0.05). On the second scintigraphy, activities were higher in DES vs. BMS (0.26 vs. 0.19 counts/pixel/MBq, respectively; p < 0.005). High activities measured in stents in vivo were associated with the detection of thrombi on corresponding histological sections and SEM.ConclusionsIn this work, we developed a rabbit model of non-occlusive thrombosis of stents in carotid arteries. In this model, in-stent thrombi could be detected using annexin V 99mTc scintigraphy

    EANM procedural guidelines for myocardial perfusion scintigraphy using cardiac-centered gamma cameras

    Get PDF
    Abstract An increasing number of Nuclear Medicine sites in Europe are using cardiac-centered gamma cameras for myocardial perfusion scintigraphy (MPS). Three cardiac-centered gamma cameras are currently the most frequently used in Europe: the D-SPECT (Spectrum Dynamics), the Alcyone (Discovery NM 530c and Discovery NM/CT 570c; General Electric Medical Systems), and the IQ-SPECT (Siemens Healthcare). The increased myocardial count sensitivity of these three cardiac-centered systems has allowed for a decrease in the activities of radiopharmaceuticals injected to patients for myocardial perfusion imaging and, consequently, radiation exposure of patients. When setting up protocols for MPS, the overall objective should be to maintain high diagnostic accuracy of MPS, while injecting the lowest activities reasonably achievable to reduce the level of radiation exposure of patient and staff. These guidelines aim at providing recommendations for acquisition protocols and image interpretation using cardiac-centered cameras. As each imaging system has specific design and features for image acquisition and analysis, these guidelines have been separated into three sections for each gamma camera system. These recommendations have been written by the members of the Cardiovascular Committee of EANM and were based on their own experience with each of these systems and on the existing literature

    Procedural recommendations of cardiac PET/CT imaging:standardization in inflammatory-, infective-, infiltrative-, and innervation (4Is)-related cardiovascular diseases: a joint collaboration of the EACVI and the EANM

    Get PDF
    With this document, we provide a standard for PET/(diagnostic) CT imaging procedures in cardiovascular diseases that are inflammatory, infective, infiltrative, or associated with dysfunctional innervation (4Is). This standard should be applied in clinical practice and integrated in clinical (multicenter) trials for optimal procedural standardization. A major focus is put on procedures using [18F]FDG, but 4Is PET radiopharmaceuticals beyond [18F]FDG are also described in this document. Whilst these novel tracers are currently mainly applied in early clinical trials, some multicenter trials are underway and we foresee in the near future their use in clinical care and inclusion in the clinical guidelines. Finally, PET/MR applications in 4Is cardiovascular diseases are also briefly described. Diagnosis and management of 4Is-related cardiovascular diseases are generally complex and often require a multidisciplinary approach by a team of experts. The new standards described herein should be applied when using PET/CT and PET/MR, within a multimodality imaging framework both in clinical practice and in clinical trials for 4Is cardiovascular indications.</p

    Procedural recommendations of cardiac PET/CT imaging: standardization in inflammatory-, infective-, infiltrative-, and innervation (4Is)-related cardiovascular diseases: a joint collaboration of the EACVI and the EANM

    Get PDF
    With this document, we provide a standard for PET/(diagnostic) CT imaging procedures in cardiovascular diseases that are inflammatory, infective, infiltrative, or associated with dysfunctional innervation (4Is). This standard should be applied in clinical practice and integrated in clinical (multicenter) trials for optimal procedural standardization. A major focus is put on procedures using [18F]FDG, but 4Is PET radiopharmaceuticals beyond [18F]FDG are also described in this document. Whilst these novel tracers are currently mainly applied in early clinical trials, some multicenter trials are underway and we foresee in the near future their use in clinical care and inclusion in the clinical guidelines. Finally, PET/MR applications in 4Is cardiovascular diseases are also briefly described. Diagnosis and management of 4Is-related cardiovascular diseases are generally complex and often require a multidisciplinary approach by a team of experts. The new standards described herein should be applied when using PET/CT and PET/MR, within a multimodality imaging framework both in clinical practice and in clinical trials for 4Is cardiovascular indications.</p

    Procedural recommendations of cardiac PET/CT imaging: standardization in inflammatory-, infective-, infiltrative-, and innervation- (4Is) related cardiovascular diseases: a joint collaboration of the EACVI and the EANM: summary

    Get PDF
    With this summarized document we share the standard for positron emission tomography (PET)/(diagnostic)computed tomography (CT) imaging procedures in cardiovascular diseases that are inflammatory, infective, infiltrative, or associated with dysfunctional innervation (4Is) as recently published in the European Journal of Nuclear Medicine and Molecular Imaging. This standard should be applied in clinical practice and integrated in clinical (multicentre) trials for optimal standardization of the procedurals and interpretations. A major focus is put on procedures using [18F]-2-fluoro-2-deoxyglucose ([18F]FDG), but 4Is PET radiopharmaceuticals beyond [18F]FDG are also described in this summarized document. Whilst these novel tracers are currently mainly applied in early clinical trials, some multicentre trials are underway and we foresee in the near future their use in clinical care and inclusion in the clinical guidelines. Diagnosis and management of 4Is related cardiovascular diseases are generally complex and often require a multidisciplinary approach by a team of experts. The new standards described herein should be applied when using PET/CT and PET/magnetic resonance, within a multimodality imaging framework both in clinical practice and in clinical trials for 4Is cardiovascular indications.</p

    A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology

    Full text link

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore