351 research outputs found
The role of extracellular matrix elasticity and composition in regulating the nucleus pulposus cell phenotype in the intervertebral disc: a narrative review.
Intervertebral disc (IVD) disorders are a major contributor to disability and societal health care costs. Nucleus pulposus (NP) cells of the IVD exhibit changes in both phenotype and morphology with aging-related IVD degeneration that may impact the onset and progression of IVD pathology. Studies have demonstrated that immature NP cell interactions with their extracellular matrix (ECM) may be key regulators of cellular phenotype, metabolism and morphology. The objective of this article is to review our recent experience with studies of NP cell-ECM interactions that reveal how ECM cues can be manipulated to promote an immature NP cell phenotype and morphology. Findings demonstrate the importance of a soft (<700 Pa), laminin-containing ECM in regulating healthy, immature NP cells. Knowledge of NP cell-ECM interactions can be used for development of tissue engineering or cell delivery strategies to treat IVD-related disorders
Photocrosslinkable laminin-functionalized polyethylene glycol hydrogel for intervertebral disc regeneration
Intervertebral disc (IVD) disorders and age-related degeneration are believed to contribute to lower back pain. There is significant interest in cell-based strategies for regenerating the nucleus pulposus (NP) region of the disc; however, few scaffolds have been evaluated for their ability to promote or maintain an immature NP cell phenotype. Previous studies have shown that NP cell-laminin interactions promote cell adhesion and biosynthesis, which suggests a laminin-functionalized biomaterial may be useful for promoting or maintaining the NP cell phenotype. Here, a photocrosslinkable poly(ethylene glycol)-laminin 111 (PEG-LM111) hydrogel was developed. The mechanical properties of PEG-LM111 hydrogel could be tuned within the range of dynamic shear moduli values previously reported for human NP. When primary immature porcine NP cells were seeded onto PEG-LM111 hydrogels of varying stiffnesses, LM111-presenting hydrogels were found to promote cell clustering and increased levels of sGAG production as compared to stiffer LM111-presenting and PEG-only gels. When cells were encapsulated in 3-D gels, hydrogel formulation was found to influence NP cell metabolism and expression of proposed NP phenotypic markers, with higher expression of N-cadherin and cytokeratin 8 observed for cells cultured in softer (<1 kPa) PEG-LM111 hydrogels. Overall, these findings suggest that soft, LM111-functionalized hydrogels may promote or maintain the expression of specific markers characteristic of an immature NP cell phenotype. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved
Changes in midbrain pain receptor expression, gait and behavioral sensitivity in a rat model of radiculopathy.
Intervertebral disc herniation may contribute to inflammatory processes that associate with radicular pain and motor deficits. Molecular changes at the affected dorsal root ganglion (DRG), spinal cord, and even midbrain, have been documented in rat models of radiculopathy or nerve injury. The objective of this study was to evaluate gait and the expression of key pain receptors in the midbrain in a rodent model of radiculopathy. Radiculopathy was induced by harvesting tail nucleus pulposus (NP) and placing upon the right L5 DRG in rats (NP-treated, n=12). Tail NP was discarded in sham-operated animals (n=12). Mechanical allodynia, weight-bearing, and gait were evaluated in all animals over time. At 1 and 4 weeks after surgery, astrocyte and microglial activation was tested in DRG sections. Midbrain sections were similarly evaluated for immunoreactivity to serotonin (5HT(2B)), mu-opioid (”-OR), and metabotropic glutamate (mGluR4 and 5) receptor antibodies. NP-treated animals placed less weight on the affected limb 1 week after surgery and experienced mechanical hypersensitivity over the duration of the study. Astroctye activation was observed at DRGs only at 4 weeks after surgery. Findings for pain receptors in the midbrain of NP-treated rats included an increased expression of 5HT(2B) at 1, but not 4 weeks; increased expression of ”-OR and mGluR5 at 1 and 4 weeks (periaqueductal gray region only); and no changes in expression of mGluR4 at any point in this study. These observations provide support for the hypothesis that the midbrain responds to DRG injury with a transient change in receptors regulating pain responses
Density-functional study of LixMoS2 intercalates (0<=x<=1)
The stability of Lithium intercalated 2H- and 1T allotropes of Molybdenum
disulfide (LixMoS2) is studied within a density-functional theory framework as
function of the Li content (x) and the intercalation sites. Octahedral
coordination of Li interstitials in the van der Waals gap is found as the most
favorite for both allotropes. The critical content of Lithium, required for the
initialization of a 2H->1T phase transition is estimated to x ~ 0.4. For
smaller Li contents the hexagonal 2H crystal structure is not changed, while
1T-LixMoS2 compounds adopt a monoclinic lattice. All allotropic forms of
LixMoS2 - excluding the monoclinic Li1.0MoS2 structure - show metallic-like
character. The monoclinic Li1.0MoS2 is a semiconductor with a band gap of 1.1
eV. Finally, the influence of Li intercalation on the stability of multiwalled
MoS2 nanotubes is discussed within a phenomenological model.Comment: submitted to Comput.Mater.Sc
Home healthcare services in Taiwan: a nationwide study among the older population
<p>Abstract</p> <p>Background</p> <p>Home healthcare services are important in aging societies worldwide. The present nationwide study of health insurance data examined the utilization and delivery patterns, including diagnostic indications, for home healthcare services used by seniors in Taiwan.</p> <p>Methods</p> <p>Patients â„65 years of age who received home healthcare services during 2004 under the Taiwanese National Health Insurance Program were identified and reimbursement claims were analyzed. Age, gender, disease diagnoses, distribution of facilities providing home healthcare services, and patterns of professional visits, including physician and skilled nursing visits, were also explored.</p> <p>Results</p> <p>Among 2,104,978 beneficiaries â„65 years of age, 19,483 (0.9%) patients received 127,753 home healthcare visits during 2004 with a mean number of 6.0 ± 4.8 visits per person. The highest prevalence of home healthcare services was in the 75-84 year age group in both sexes. Females received more home healthcare services than males in all age groups. Cerebrovascular disease was the most frequent diagnosis in these patients (50.7%). More than half of home healthcare visits and around half of the professional home visits were provided by community home nursing care institutions. The majority of the home skilled nursing services were tube replacements, including nasogastric tubes, Foley catheter, tracheostomy, nephrostomy or cystostomy tubes (95%).</p> <p>Conclusions</p> <p>Nine out of 1,000 older patients in Taiwan received home healthcare services during 2004, which was much lower than the rate of disabled older people in Taiwan. Females used home healthcare services more frequently than males and the majority of skilled nursing services were tube replacements. The rate of tube replacement of home healthcare patients in Taiwan deserves to be paid more attention.</p
Exercise training and selenium or a combined treatment ameliorates aberrant expression of glucose and lactate metabolic proteins in skeletal muscle in a rodent model of diabetes
Exercise training (ET) and selenium (SEL) were evaluated either individually or in combination (COMBI) for their effects on expression of glucose (AMPK, PGC-1α, GLUT-4) and lactate metabolic proteins (LDH, MCT-1, MCT-4, COX-IV) in heart and skeletal muscles in a rodent model (Goto-Kakisaki, GK) of diabetes. Forty GK rats either remained sedentary (SED), performed ET, received SEL, (5 ”mol·kg body wt-1·day-1) or underwent both ET and SEL treatment for 6 wk. ET alone, SEL alone, or COMBI resulted in a significant lowering of lactate, glucose, and insulin levels as well as a reduction in HOMA-IR and AUC for glucose relative to SED. Additionally, ET alone, SEL alone, or COMBI increased glycogen content and citrate synthase (CS) activities in liver and muscles. However, their effects on glycogen content and CS activity were tissue-specific. In particular, ET alone, SEL alone, or COMBI induced upregulation of glucose (AMPK, PGC-1α, GLUT-4) and lactate (LDH, MCT-1, MCT-4, COX-IV) metabolic proteins relative to SED. However, their effects on glucose and lactate metabolic proteins also appeared to be tissue-specific. It seemed that glucose and lactate metabolic protein expression was not further enhanced with COMBI compared to that of ET alone or SEL alone. These data suggest that ET alone or SEL alone or COMBI represent a practical strategy for ameliorating aberrant expression of glucose and lactate metabolic proteins in diabetic GK rats
Transcriptome and proteome dynamics in chemostat culture reveal how Campylobacter jejuni modulates metabolism, stress responses and virulence factors upon changes in oxygen availability
Campylobacter jejuni, the most frequent cause of food-borne bacterial gastroenteritis worldwide, is a microaerophile that has to survive high environmental oxygen tensions, adapt to oxygen limitation in the intestine and resist host oxidative attack. Here, oxygen-dependent changes in C. jejuni physiology were studied at constant growth rate using carbon (serine)-limited continuous chemostat cultures. We show that a perceived aerobiosis scale can be calibrated by the acetate excretion flux, which becomes zero when metabolism is fully aerobic (100% aerobiosis). Transcriptome changes in a downshift experiment from 150% to 40% aerobiosis revealed many novel oxygen-regulated genes and highlighted re-modelling of the electron transport chains. A label-free proteomic analysis showed that at 40% aerobiosis, many proteins involved in host colonisation (e.g. PorA, CadF, FlpA, CjkT) became more abundant. PorA abundance increased steeply below 100% aerobiosis. In contrast, several citric-acid cycle enzymes, the peptide transporter CstA, PEB1 aspartate/glutamate transporter, LutABC lactate dehydrogenase and PutA proline dehydrogenase became more abundant with increasing aerobiosis. We also observed a co-ordinated response of oxidative stress protection enzymes and Fe-S cluster biogenesis proteins above 100% aerobiosis. Our approaches reveal key virulence factors that respond to restricted oxygen availability and specific transporters and catabolic pathways activated with increasing aerobiosis. This article is protected by copyright. All rights reserved
Left ventricular T2 distribution in Duchenne Muscular Dystrophy
<p>Abstract</p> <p>Background</p> <p>Although previous studies have helped define the natural history of Duchenne Muscular Dystrophy (DMD)-associated cardiomyopathy, the myocardial pathobiology associated with functional impairment in DMD is not yet known.</p> <p>The objective of this study was to assess the distribution of transverse relaxation time (T2) in the left ventricle (LV) of DMD patients, and to determine the association of myocardial T2 heterogeneity to the severity of cardiac dysfunction. DMD patients (n = 26) and normal control subjects (n = 13) were studied by Cardiovascular Magnetic Resonance (CMR). DMD subject data was stratified based on subject age and LV Ejection Fraction (EF) into the following groups: A (<12 years old, n = 12); B (â„12 years old, EF †55%, n = 8) and C (â„12 years old, EF = 55%, n = 6). Controls were also stratified by age into Groups N1 (<12 years, n = 6) and N2 (>12 years, n = 5). LV mid-slice circumferential myocardial strain (Δ<sub>cc</sub>) was calculated using tagged CMR imaging. T2 maps of the LV were generated for all subjects using a black blood dual spin echo method at two echo times. The Full Width at Half Maximum (<it>FWHM</it>) was calculated from a histogram of LV T2 distribution constructed for each subject.</p> <p>Results</p> <p>In DMD subject groups, <it>FWHM </it>of the T2 histogram rose progressively with age and decreasing EF (Group A <it>FWHM</it>= 25.3 ± 3.8 ms; Group B <it>FWHM</it>= 30.9 ± 5.3 ms; Group C <it>FWHM</it>= 33.0 ± 6.4 ms). Further, <it>FWHM </it>was significantly higher in those with reduced circumferential strain (|Δ<sub>cc</sub>| †12%) (Group B, and C) than those with |Δ<sub>cc</sub>| > 12% (Group A). Group A <it>FWHM </it>was not different from the two normal groups (N1 <it>FWHM </it>= 25.3 ± 3.5 ms; N2 <it>FWHM</it>= 24.0 ± 7.3 ms).</p> <p>Conclusion</p> <p>Reduced EF and Δ<sub>cc </sub>correlates well with increased T2 heterogeneity quantified by <it>FWHM</it>, indicating that subclinical functional impairments could be associated with pre-existing abnormalities in tissue structure in young DMD patients.</p
- âŠ