18 research outputs found

    Topicality and Attention in Pronoun Comprehension

    No full text

    Gender Gap in Mental Health during the COVID-19 Pandemic in South Korea: A Decomposition Analysis

    No full text
    The economic and social effects of the COVID-19 pandemic have been widespread but unevenly distributed among genders. The pandemic may have also affected men’s and women’s mental health differently. This study examined whether the pandemic had stronger adverse effects on women’s mental health than on that of men given that the decline of the labor market was greater for women than for men. Using data from South Korea (June/September/December 2020, N = 3000), we investigated the gender gap in mental health during the first year of the COVID-19 pandemic and its association with gender differences in labor market experiences. We employ the Blinder–Oaxaca decomposition method for this analysis. Although depression and anxiety increased among employed women and men during COVID-19, women showed lower levels of mental health than men. A significant portion of this gender gap is explained by women experiencing greater job loss, income reduction, and prohibition of remote work than men. We also find that women in their 30s experienced greater mental health problems than men of the same age even after controlling for other conditions. Overall, our findings show that a greater proportion of employed women than men experienced poor labor market conditions and increased family burdens during the COVID-19 pandemic, which contributed to women reporting worse mental health than men

    Leucyl-tRNA Synthetase Inhibitor, D-Norvaline, in Combination with Oxacillin, Is Effective against Methicillin-Resistant Staphylococcus aureus

    No full text
    Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium that causes severe diseases in humans. For decades, MRSA has acquired substantial resistance against conventional antibiotics through regulatory adaptation, thereby posing a challenge for treating MRSA infection. One of the emerging strategies to combat MRSA is the combinatory use of antibacterial agents. Based on the dramatic change in phospholipid fatty acid (PLFA) composition of MRSA in previous results, this study investigated branched-chain amino acid derivatives (precursors of fatty acid synthesis of cell membrane) and discovered the antimicrobial potency of D-norvaline. The compound, which can act synergistically with oxacillin, is among the three leucine-tRNA synthetase inhibitors with high potency to inhibit MRSA cell growth and biofilm formation. PLFA analysis and membrane properties revealed that D-norvaline decreased the overall amount of PLFA, increasing the fluidity and decreasing the hydrophobicity of the bacterial cell membrane. Additionally, we observed genetic differences to explore the response to D-norvaline. Furthermore, deletion mutants and clinically isolated MRSA strains were treated with D-norvaline. The study revealed that D-norvaline, with low concentrations of oxacillin, was effective in killing several MRSA strains. In summary, our findings provide a new combination of aminoacyl-tRNA synthetase inhibitor D-norvaline and oxacillin, which is effective against MRSA

    Depletion of Adipocyte Becn1 Leads to Lipodystrophy and Metabolic Dysregulation

    No full text
    Becn1/Beclin-1 is a core component of the class III phosphatidylinositol 3-kinase required for autophagosome formation and vesicular trafficking. Although Becn1 has been implicated in numerous diseases such as cancer, aging, and neurodegenerative disease, the role of Becn1 in white adipose tissue and related metabolic diseases remains elusive. In this study, we show that adipocyte-specific Becn1 knockout mice develop severe lipodystrophy, leading to adipose tissue inflammation, hepatic steatosis, and insulin resistance. Ablation of Becn1 in adipocytes stimulates programmed cell death in a cell-autonomous manner, accompanied by elevated endoplasmic reticulum (ER) stress gene expression. Furthermore, we observed that Becn1 depletion sensitized mature adipocytes to ER stress, leading to accelerated cell death. Taken together, these data suggest that adipocyte Becn1 would serve as a crucial player for adipocyte survival and adipose tissue homeostasis.11Nsciescopu

    Comparison of the pathogenesis of SARS-CoV-2 infection in K18-hACE2 mouse and Syrian golden hamster models

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, causes life-threatening disease. This novel coronavirus enters host cells via the respiratory tract, promoting the formation of severe pulmonary lesions and systemic disease. Few animal models can simulate the clinical signs and pathology of COVID-19 patients. Diverse preclinical studies using K18-hACE2 mice and Syrian golden hamsters, which are highly permissive to SARS-CoV-2 in the respiratory tract, are emerging; however, the systemic pathogenesis and cellular tropism of these models remain obscure. We intranasally infected K18-hACE2 mice and Syrian golden hamsters with SARS-CoV-2, and compared the clinical features, pathogenesis, cellular tropism and infiltrated immune-cell subsets. In K18-hACE2 mice, SARS-CoV-2 persistently replicated in alveolar cells and caused pulmonary and extrapulmonary disease, resulting in fatal outcomes. Conversely, in Syrian golden hamsters, transient SARS-CoV-2 infection in bronchial cells caused reversible pulmonary disease, without mortality. Our findings provide comprehensive insights into the pathogenic spectrum of COVID-19 using preclinical models

    Image_8_Mouse models of lung-specific SARS-CoV-2 infection with moderate pathological traits.pdf

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has been a global health concern since 2019. The viral spike protein infects the host by binding to angiotensin-converting enzyme 2 (ACE2) expressed on the cell surface, which is then processed by type II transmembrane serine protease. However, ACE2 does not react to SARS-CoV-2 in inbred wild-type mice, which poses a challenge for preclinical research with animal models, necessitating a human ACE2 (hACE2)-expressing transgenic mouse model. Cytokeratin 18 (K18) promoter-derived hACE2 transgenic mice [B6.Cg-Tg(K18-ACE2)2Prlmn/J] are widely used for research on SARS-CoV-1, MERS-CoV, and SARS-CoV-2. However, SARS-CoV-2 infection is lethal at ≥105 PFU and SARS-CoV-2 target cells are limited to type-1 alveolar pneumocytes in K18-hACE2 mice, making this model incompatible with infections in the human lung. Hence, we developed lung-specific SARS-CoV-2 infection mouse models with surfactant protein B (SFTPB) and secretoglobin family 1a member 1 (Scgb1a1) promoters. After inoculation of 105 PFU of SARS-CoV-2 to the K18-hACE2, SFTPB-hACE2, and SCGB1A1-hACE2 models, the peak viral titer was detected at 2 days post-infection and then gradually decreased. In K18-hACE2 mice, the body temperature decreased by approximately 10°C, body weight decreased by over 20%, and the survival rate was reduced. However, SFTPB-hACE2 and SCGB1A1-hACE2 mice showed minimal clinical signs after infection. The virus targeted type I pneumocytes in K18-hACE2 mice; type II pneumocytes in SFTPB-hACE2 mice; and club, goblet, and ciliated cells in SCGB1A1-hACE2 mice. A time-dependent increase in severe lung lesions was detected in K18-hACE2 mice, whereas mild lesions developed in SFTPB-hACE2 and SCGB1A1-hACE2 mice. Spleen, small intestine, and brain lesions developed in K18-hACE2 mice but not in SFTPB-hACE2 and SCGB1A1-hACE2 mice. These newly developed SFTPB-hACE2 and SCGB1A1-hACE2 mice should prove useful to expand research on hACE2-mediated respiratory viruses.</p
    corecore