158 research outputs found

    Energy Efficiency of Radio Units and its Impact on RAN Energy Consumption

    Get PDF
    As mobile telecommunications networks continue to grow, energy consumption continues to grow with it. This will without a doubt affect both the operational expense for network operators and the environment due to air pollution from power stations. As of today, a lot of radio units are consuming more power than necessarily, and with the growing industry this will have a substantial impact in the future. One way to address this issue is to make radio units more energy efficient. To approach this a study on Radio 2217, an Ericsson remote radio unit, was conducted. The study involved work on both hardware and software level. In order to test and evaluate the results a real LTE radio base station was set up. An LTE network was also modeled in Matlab with the purpose to show how different power save features of radio units could reduce the energy consumption. The findings of this work shows that the existing power save implementations of the radio unit could definitely be improved. The power save features Cell-Sleep and MIMO-Sleep were improved by 36 % and 3.4 % respectively. It also showed that the energy consumption in a mobile network could be reduced by up to 57 % by modernizing hardware and adding power save features.Reducing the Environmental Impact From Mobile Telecommunication Networks During the last decades, mobile networks have continued to grow and are expected to grow even further with the introduction of Internet of Things and the next generation radio system named 5G. As the networks grow, energy efficiency and sustainability is becoming more and more interesting and necessary for the network operators. However, energy efficiency is an area often overlooked in favor of connectivity, throughput and availability when building mobile networks. To see how we could increase the energy efficiency of radio units we studied both hardware and existing energy efficiency features to see if there were any possibilities to improve the current implementations. Due to our time limit we quickly realized we could not do any hardware changes in the means of changing components for more efficient ones, for example by introducing more efficient transistors in the power amplifier. Instead, our focus became trying to improve the current power save features that were implemented in the radio. We focused mainly on two features, one which during low traffic scenarios turns off one of the transmitter branches to save power, and one feature that basically powers down the radio when there is no need for the radio to transmit nor receive. The focus on the features became trying to turn off excess components that were not used, but still powered on and consuming power. To do this we set up a complete end-to-end system with real mobile phones connected to a real base station which was based LTE technology. This gave us full control over the system to test the features and to control the radio unit. A novel approach used to identify components that were consuming power was to look at the circuit board with a thermal camera to find “hot spots”, i.e. components that were consuming power. This helped us identify what we should focus on and proved to be good at visualizing the results. By the end of our work we managed to reduce the power consumption in the features by 36 % and 3.4 % respectively. We also created a model to show how new hardware and activation of power save features impacted the energy consumption of a realistic LTE network. It is shown in the model that by replacing old hardware by new modern hardware and activating and using power save features more often, the energy consumption can be reduced by up to 57 %

    Increased brain lactate is central to the development of brain edema in rats with chronic liver disease

    Get PDF
    The pathogenesis of brain edema in patients with chronic liver disease (CLD) and minimal hepatic encephalopathy (HE) remains undefined. This study evaluated the role of brain lactate, glutamine and organic osmolytes, including myo-inositol and taurine, in the development of brain edema in a rat model of cirrhosis.Six-week bile-duct ligated (BDL) rats were injected with (13)C-glucose and de novo synthesis of lactate, and glutamine in the brain was quantified using (13)C nuclear magnetic resonance spectroscopy (NMR). Total brain lactate, glutamine, and osmolytes were measured using (1)H NMR or high performance liquid chromatography. To further define the interplay between lactate, glutamine and brain edema, BDL rats were treated with AST-120 (engineered activated carbon microspheres) and dichloroacetate (DCA: lactate synthesis inhibitor).Significant increases in de novo synthesis of lactate (1.6-fold, p<0.001) and glutamine (2.2-fold, p<0.01) were demonstrated in the brains of BDL rats vs. SHAM-operated controls. Moreover, a decrease in cerebral myo-inositol (p<0.001), with no change in taurine, was found in the presence of brain edema in BDL rats vs. controls. BDL rats treated with either AST-120 or DCA showed attenuation in brain edema and brain lactate. These two treatments did not lead to similar reductions in brain glutamine.Increased brain lactate, and not glutamine, is a primary player in the pathogenesis of brain edema in CLD. In addition, alterations in the osmoregulatory response may also be contributing factors. Our results suggest that inhibiting lactate synthesis is a new potential target for the treatment of HE.Canadian Institutes of Health Research. CB:Fonds de recherche du Québec – Sant

    Dorsal-Ventral Differences in Retinal Structure in the Pigmented Royal College of Surgeons Model of Retinal Degeneration: Retinal Changes in the RCS With Age

    Get PDF
    Retinitis pigmentosa is a family of inherited retinal degenerations associated with gradual loss of photoreceptors, that ultimately leads to irreversible vision loss. The Royal College of Surgeon's (RCS) rat carries a recessive mutation affecting mer proto-oncogene tyrosine kinase (merTK), that models autosomal recessive disease. The aim of this study was to understand the glial, microglial, and photoreceptor changes that occur in different retinal locations with advancing disease. Pigmented RCS rats (RCS-p+/LAV) and age-matched isogenic control rdy (RCS-rdy +p+/LAV) rats aged postnatal day 18 to 6 months were evaluated for in vivo retinal structure and function using optical coherence tomography and electroretinography. Retinal tissues were assessed using high resolution immunohistochemistry to evaluate changes in photoreceptors, glia and microglia in the dorsal, and ventral retina. Photoreceptor dysfunction and death occurred from 1 month of age. There was a striking difference in loss of photoreceptors between the dorsal and ventral retina, with a greater number of photoreceptors surviving in the dorsal retina, despite being adjacent a layer of photoreceptor debris within the subretinal space. Loss of photoreceptors in the ventral retina was associated with fragmentation of the outer limiting membrane, extension of glial processes into the subretinal space that was accompanied by possible adhesion and migration of mononuclear phagocytes in the subretinal space. Overall, these findings highlight that breakdown of the outer limiting membrane could play an important role in exacerbating photoreceptor loss in the ventral retina. Our results also highlight the value of using the RCS rat to model sectorial retinitis pigmentosa, a disease known to predominantly effect the inferior retina

    The impact of cataract surgey on vision-related quality of life for bilateral cataract patients in Ho Chi Minh City, Vietnam: a prospective study

    Get PDF
    BACKGROUND: To determine the impact of cataract surgery on vision-related quality of life (VRQOL) and examine the association between objective visual measures and change in VRQOL after surgery among bilateral cataract patients in Ho Chi Minh City, Vietnam. METHODS: A cohort of older patients with bilateral cataract was assessed one week before and one to three months after first eye or both eye cataract surgery. Visual measures including visual acuity, contrast sensitivity and stereopsis were obtained. Vision-related quality of life was assessed using the NEI VFQ-25. Descriptive analyses and a generalized linear estimating equation (GEE) analysis were undertaken to measure change in VRQOL after surgery. RESULTS: Four hundred and thirteen patients were assessed before cataract surgery and 247 completed the follow-up assessment one to three months after first or both eye cataract surgery. Overall, VRQOL significantly improved after cataract surgery (p < 0.001) particularly after both eye surgeries. Binocular contrast sensitivity (p < 0.001) and stereopsis (p < 0.001) were also associated with change in VRQOL after cataract surgery. Visual acuity was not associated with VRQOL. CONCLUSIONS: Cataract surgery significantly improved VRQOL among bilateral cataract patients in Vietnam. Contrast sensitivity as well as stereopsis, rather than visual acuity significantly affected VRQOL after cataract surgery

    Dorsal-Ventral Differences in Retinal Structure in the Pigmented Royal College of Surgeons Model of Retinal Degeneration

    Get PDF
    Retinitis pigmentosa is a family of inherited retinal degenerations associated with gradual loss of photoreceptors, that ultimately leads to irreversible vision loss. The Royal College of Surgeon's (RCS) rat carries a recessive mutation affecting mer proto-oncogene tyrosine kinase (merTK), that models autosomal recessive disease. The aim of this study was to understand the glial, microglial, and photoreceptor changes that occur in different retinal locations with advancing disease. Pigmented RCS rats (RCS-p+/LAV) and age-matched isogenic control rdy (RCS-rdy +p +/LAV) rats aged postnatal day 18 to 6 months were evaluated for in vivo retinal structure and function using optical coherence tomography and electroretinography. Retinal tissues were assessed using high resolution immunohistochemistry to evaluate changes in photoreceptors, glia and microglia in the dorsal, and ventral retina. Photoreceptor dysfunction and death occurred from 1 month of age. There was a striking difference in loss of photoreceptors between the dorsal and ventral retina, with a greater number of photoreceptors surviving in the dorsal retina, despite being adjacent a layer of photoreceptor debris within the subretinal space. Loss of photoreceptors in the ventral retina was associated with fragmentation of the outer limiting membrane, extension of glial processes into the subretinal space that was accompanied by possible adhesion and migration of mononuclear phagocytes in the subretinal space. Overall, these findings highlight that breakdown of the outer limiting membrane could play an important role in exacerbating photoreceptor loss in the ventral retina. Our results also highlight the value of using the RCS rat to model sectorial retinitis pigmentosa, a disease known to predominantly effect the inferior retina

    Atmospheric Entry Studies for Uranus

    Get PDF
    The Objectives of this work are: 1) Establish a range of probe atmospheric entry environments based on the Uranus Flagship mission outlined in the Planetary Science Decadal Survey for two launch windows: Year 2021 and 2034. 2) Define Uranus entry trade space by performing parametric studies, by varying vehicle mass and size and entry Flight Path Angle (FPA). 3) Investigate various trajectory options, including direct ballistic entry and aero-capture entry. 4) Identify entry technologies that could be leveraged to enable a viable mission to Uranus that meets science objectives

    PTX3 Polymorphisms and Invasive Mold Infections After Solid Organ Transplant

    Get PDF
    Donor PTX3 polymorphisms were shown to influence the risk of invasive aspergillosis among hematopoietic stem cell transplant recipients. Here, we show that PTX3 polymorphisms are independent risk factors for invasive mold infections among 1101 solid organ transplant recipients, thereby strengthening their role in mold infection pathogenesis and patients' risk stratificatio

    Reply to Cunha et al

    Get PDF

    Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and In Vivo

    Get PDF
    Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells
    • …
    corecore