506 research outputs found

    Human Hematopoietic Stem Cell Engrafted IL-15 Transgenic NSG Mice Support Robust NK Cell Responses and Sustained HIV-1 Infection.

    Get PDF
    Mice reconstituted with human immune systems are instrumental in the investigation of HIV-1 pathogenesis and therapeutics. Natural killer (NK) cells have long been recognized as a key mediator of innate anti-HIV responses. However, established humanized mouse models do not support robust human NK cell development from engrafted human hematopoietic stem cells (HSCs). A major obstacle to human NK cell reconstitution is the lack of human interleukin-15 (IL-15) signaling, as murine IL-15 is a poor stimulator of the human IL-15 receptor. Here, we demonstrate that immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice expressing a transgene encoding human IL-15 (NSG-Tg(IL-15)) have physiological levels of human IL-15 and support long-term engraftment of human NK cells when transplanted with human umbilical-cord-blood-derived HSCs. These Hu-NSG-Tg(IL-15) mice demonstrate robust and long-term reconstitution with human immune cells, but do not develop graft-versus-host disease (GVHD), allowing for long-term studies of human NK cells. Finally, we show that these HSC engrafted mice can sustain HIV-1 infection, resulting in human NK cell responses in HIV-infected mice. We conclude that Hu-NSG-Tg(IL-15) mice are a robust novel model to study NK cell responses to HIV-1

    The pancreatic β cell is a key site for mediating the effects of leptin on glucose homeostasis

    Get PDF
    SummaryThe hormone leptin plays a crucial role in maintenance of body weight and glucose homeostasis. This occurs through central and peripheral pathways, including regulation of insulin secretion by pancreatic β cells. To study this further in mice, we disrupted the signaling domain of the leptin receptor gene in β cells and hypothalamus. These mice develop obesity, fasting hyperinsulinemia, impaired glucose-stimulated insulin release, and glucose intolerance, similar to leptin receptor null mice. However, whereas complete loss of leptin function causes increased food intake, this tissue-specific attenuation of leptin signaling does not alter food intake or satiety responses to leptin. Moreover, unlike other obese models, these mice have reduced fasting blood glucose. These results indicate that leptin regulation of glucose homeostasis extends beyond insulin sensitivity to influence β cell function, independent of pathways controlling food intake. These data suggest that defects in this adipoinsular axis could contribute to diabetes associated with obesity

    Neuronal CRTC-1 Governs Systemic Mitochondrial Metabolism and Lifespan via a Catecholamine Signal

    Get PDF
    SummaryLow energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin-mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. This pro-longevity metabolic state is regulated cell nonautonomously by CRTC-1 in the nervous system. Neuronal CRTC-1/CREB regulates peripheral metabolism antagonistically with the functional PPARι ortholog, NHR-49, drives mitochondrial fragmentation in distal tissues, and suppresses the effects of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that while both local and distal mechanisms combine to modulate aging, distal regulation overrides local contribution. Targeting central perception of energetic state is therefore a potential strategy to promote healthy aging

    Pyrite nanocrystals: shape-controlled synthesis and tunable optical properties via reversible self-assembly

    Get PDF
    Nanocrystals from non-toxic, earth abundant materials have recently received great interest for their potential large-scale application in photovoltaics and photocatalysis. Here, we report for the first time on the shape-controlled and scalable synthesis of phase-pure pyrite (FeS2) nanocrystals employing the simple, inexpensive, thermal reaction of iron–oleylamine complexes with sulfur in oleylamine. Either dendritic nanocrystals (nanodendrites) or nanocubes are obtained by adjusting the iron-oleylamine concentration and thereby controlling the nucleus concentration and kinetics of the nanocrystal growth. Pyrite nanodendrites are reversibly assembled by washing with toluene and redispersed by adding the ligand oleylamine. The assembly–redispersion-process is accompanied by an increased absorption in the red/near-infrared spectral region for the aggregated state. This increased low-energy absorption is due to interactions between the closed-packed nanocrystals. High-concentration nanodendrite dispersions are used to prepare pyrite thin films with strong broadband extinction in the visible and near-infrared. These films are attractive candidates for light harvesting in all inorganic solar cells based on earth abundant, non-toxic materials as well as for photocatalytic applications

    Genome Resources for Climate‐Resilient Cowpea, an Essential Crop for Food Security

    Get PDF
    Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought‐prone climates, and a primary source of protein in sub‐Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K‐499‐35 include a whole‐genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi‐parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited‐input small‐holder farming and climate stress

    Molecular charge distributions in strong magnetic fields: a conceptual and current DFT study

    Get PDF
    The effect of strong magnetic fields on the charge distribution of the hydrogen halides, H2O and NH3 is studied in the context of recent extensions of conceptual density functional theory to include additional variables such as external magnetic fields. From conceptual DFT studies on atoms in strong magnetic fields, changes in electronegativity and hardness suggest a reversal in polarity for all three diatomic molecules under these conditions. This is confirmed by current DFT calculations on these molecules in the presence of strong magnetic fields parallel and perpendicular to the internuclear axis; in the former case the electric dipole moment only undergoes small changes whereas in the latter case it changes significantly and also reverses in direction, doing so at lower field strength if the geometry is relaxed. The absence of a dipole moment induced perpendicular to the bond when a magnetic field is applied in this direction is understood by consideration of time reversal symmetry. Similar results are obtained for H2O and NH3; this may be an important point to consider in future studies focused on the unresolved question on the behaviour of hydrogen bonding in applied magnetic fields

    Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour

    Get PDF
    Protein lysine posttranslational modification by an increasing number of different acyl groups is becoming appreciated as a regulatory mechanism in cellular biology. Sirtuins are class III histone deacylases that use NAD(+) as a co-substrate during amide bond hydrolysis. Several studies have described the sirtuins as sensors of the NAD(+)/NADH ratio, but it has not been formally tested for all the mammalian sirtuins in vitro. To address this problem, we first synthesized a wide variety of peptide-based probes, which were used to identify the range of hydrolytic activities of human sirtuins. These probes included aliphatic ϵ-N-acyllysine modifications with hydrocarbon lengths ranging from formyl (C(1)) to palmitoyl (C(16)) as well as negatively charged dicarboxyl-derived modifications. In addition to the well established activities of the sirtuins, “long chain” acyllysine modifications were also shown to be prone to hydrolytic cleavage by SIRT1–3 and SIRT6, supporting recent findings. We then tested the ability of NADH, ADP-ribose, and nicotinamide to inhibit these NAD(+)-dependent deacylase activities of the sirtuins. In the commonly used 7-amino-4-methylcoumarin-coupled fluorescence-based assay, the fluorophore has significant spectral overlap with NADH and therefore cannot be used to measure inhibition by NADH. Therefore, we turned to an HPLC-MS-based assay to directly monitor the conversion of acylated peptides to their deacylated forms. All tested sirtuin deacylase activities showed sensitivity to NADH in this assay. However, the inhibitory concentrations of NADH in these assays are far greater than the predicted concentrations of NADH in cells; therefore, our data indicate that NADH is unlikely to inhibit sirtuins in vivo. These data suggest a re-evaluation of the sirtuins as direct sensors of the NAD(+)/NADH ratio

    Stereotype reputation with limited observability

    Get PDF
    Assessing trust and reputation is essential in multi-agent systems where agents must decide who to interact with. Assessment typically relies on the direct experience of a trustor with a trustee agent, or on information from witnesses. Where direct or witness information is unavailable, such as when agent turnover is high, stereotypes learned from common traits and behaviour can provide this information. Such traits may be only partially or subjectively observed, with witnesses not observing traits of some trustees or interpreting their observations differently. Existing stereotype-based techniques are unable to account for such partial observability and subjectivity. In this paper we propose a method for extracting information from witness observations that enables stereotypes to be applied in partially and subjectively observable dynamic environments. Specifically, we present a mechanism for learning translations between observations made by trustor and witness agents with subjective interpretations of traits. We show through simulations that such translation is necessary for reliable reputation assessments in dynamic environments with partial and subjective observability

    Model binding experiments with cucurbit[7]uril and p-sulfonatocalix[4]arene support use of explicit solvation term in governing equation for binding equilibria

    Get PDF
    The thermodynamics of model host–guest-binding reactions is examined in depth using isothermal titration calorimetry. In conflict with classical thermodynamics, the results indicate that the equilibrium-binding quotient, K, is not a constant for all pairings. This outcome is predicted by an equation for binding equilibria that includes an explicit term for the change in solvation free energy that accompanies the formation of a binary complex. Application of this framework to the experimentally observed concentration dependence of K allows one to obtain the energetic contribution of the solvent, a linked equilibrium denoted here as ΔGH2O. The estimated values of ΔGH2O are large and unfavourable for the binding of selected guest molecules to two hosts, cucurbit[7]uril and p-sulfonatocalix[4]arene. Intriguingly, the estimated values of ΔGH2O are near zero for the binding of two hydrophobic guest molecules to β-cyclodextrin, leading to a thought-provoking discussion on the driving force behind the hydrophobic effect

    Input Clinical Parameters for Cardiac Heart Failure Characterization Using Machine Learning

    Get PDF
    Congestive Heart Failure (CHF) is a serious chronic cardiac condition that brings high risk of urgent hospi- talization and could lead to death. In this work we show how all the input clinical parameters for classifying CHF using Machine Learning can be acquired. The requested input are Blood Pres- sure, Heart Rate, Brain Natriuretic Peptide, Electrocardio- gram, Blood Oxygen Saturation, Height, Weight and Ejection Fraction. The next step will be designing a novel device and con- necting it to our Machine Learning classifier. A particular at- tention will be put to the assessment of electromagnetic compat- ibility (EMC) with other devices, taking into account that this new device will be used in many different settings (home, out- door, etc.
    • …
    corecore