351 research outputs found

    QTLs for Morphogenetic Traits in Medicago Truncatula

    Get PDF
    Plant morphogenesis that includes growth, development and flowering date, drives a large number of agronomical important traits in both grain and forage crops. Quantitative trait locus (QTL) mapping is a way to locate zones of the genome that are involved in the variations observed in a segregating population. Co-location of QTLs and candidate genes is an indication of the involvement of the genes in the variation. The objective of this study was to analyse segregation of aerial morphogenetic traits in a mapping population of recombinant inbred lines of the model legume species M. truncatula , to locate QTLs and candidate genes

    Promotion of mental health in young adults via mobile phone app: study protocol of the ECoWeB (emotional competence for well-being in Young adults) cohort multiple randomised trials

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordAvailability of data and materials: Anonymised datasets arising from this trial will be made available after the primary outcomes are published to researchers and other groups via request to a data committee within the Consortium via the University of Exeter’s open access data system Open Research Exeter (ORE). ECoWeB partners will have access to the final trial dataset, commensurate with the grant Consortium Agreement. The results will additionally be updated on ClinicalTrials.gov Identifier: NCT04148508. The ECoWeB consortium plans to communicate trial results through peer-reviewed open access publications and direct reports to TSC, sponsor, and participants.BACKGROUND: Promoting well-being and preventing poor mental health in young people is a major global priority. Building emotional competence (EC) skills via a mobile app may be an effective, scalable and acceptable way to do this. However, few large-scale controlled trials have examined the efficacy of mobile apps in promoting mental health in young people; none have tailored the app to individual profiles. METHOD/DESIGN: The Emotional Competence for Well-Being in Young Adults cohort multiple randomised controlled trial (cmRCT) involves a longitudinal prospective cohort to examine well-being, mental health and EC in 16-22 year olds across 12 months. Within the cohort, eligible participants are entered to either the PREVENT trial (if selected EC scores at baseline within worst-performing quartile) or to the PROMOTE trial (if selected EC scores not within worst-performing quartile). In both trials, participants are randomised (i) to continue with usual practice, repeated assessments and a self-monitoring app; (ii) to additionally receive generic cognitive-behavioural therapy self-help in app; (iii) to additionally receive personalised EC self-help in app. In total, 2142 participants aged 16 to 22 years, with no current or past history of major depression, bipolar disorder or psychosis will be recruited across UK, Germany, Spain, and Belgium. Assessments take place at baseline (pre-randomisation), 1, 3 and 12 months post-randomisation. Primary endpoint and outcome for PREVENT is level of depression symptoms on the Patient Health Questionnaire-9 at 3 months; primary endpoint and outcome for PROMOTE is emotional well-being assessed on the Warwick-Edinburgh Mental Wellbeing Scale at 3 months. Depressive symptoms, anxiety, well-being, health-related quality of life, functioning and cost-effectiveness are secondary outcomes. Compliance, adverse events and potentially mediating variables will be carefully monitored. CONCLUSIONS: The trial aims to provide a better understanding of the causal role of learning EC skills using interventions delivered via mobile phone apps with respect to promoting well-being and preventing poor mental health in young people. This knowledge will be used to develop and disseminate innovative evidence-based, feasible, and effective Mobile-health public health strategies for preventing poor mental health and promoting well-being. TRIAL REGISTRATION: ClinicalTrials.gov ( www.clinicaltrials.org ). Number of identification: NCT04148508 November 2019.European Union Horizon 202

    Evaluation of the endoplasmic reticulum-stress response in eIF2B-mutated lymphocytes and lymphoblasts from CACH/VWM patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic translation initiation factor 2B (eIF2B), a guanine nucleotide exchange factor (GEF) and a key regulator of translation initiation under normal and stress conditions, causes an autosomal recessive leukodystrophy of a wide clinical spectrum. EBV-immortalised lymphocytes (EIL) from eIF2B-mutated patients exhibit a decrease in eIF2B GEF activity. eIF2B-mutated primary fibroblasts have a hyper-induction of activating transcription factor 4 (ATF4) which is involved in the protective unfolded protein response (UPR), also known as the ER-stress response. We tested the hypothesis that EIL from eIF2B-mutated patients also exhibit a heightened ER-stress response.</p> <p>Methods</p> <p>We used thapsigargin as an ER-stress agent and looked at polysomal profiles, rate of protein synthesis, translational activation of <it>ATF4</it>, and transcriptional induction of stress-specific mRNAs (<it>ATF4, CHOP, ASNS, GRP78</it>) in normal and eIF2B-mutated EIL. We also compared the level of stress-specific mRNAs between EIL and primary lymphocytes (PL).</p> <p>Results</p> <p>Despite the low eIF2B GEF activity in the 12 eIF2B-mutated EIL cell lines tested (range 40-70% of normal), these cell lines did not differ from normal EIL in their ATF4-mediated ER-stress response. The absence of hyper-induction of ATF4-mediated ER-stress response in eIF2B-mutated EIL in contrast to primary fibroblasts is not related to their transformation by EBV. Indeed, PL exhibited a higher induction of the stress-specific mRNAs in comparison to EIL, but no hyper-induction of the UPR was noticed in the eIF2B-mutated cell lines in comparison to controls.</p> <p>Conclusions</p> <p>Taken together with work of others, our results demonstrate the absence of a major difference in ER-stress response between controls and eIF2B-mutated cells. Therefore, components of the ER-stress response cannot be used as discriminantory markers in eIF2B-related disorders.</p

    Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals

    Get PDF
    Genome-wide association studies (GWASs) have identified thousands of cancer risk loci revealing many risk regions shared across multiple cancers. Characterizing the cross-cancer shared genetic basis can increase our understanding of global mechanisms of cancer development. In this study, we collected GWAS summary statistics based on up to 375,468 cancer cases and 530,521 controls for fourteen types of cancer, including breast (overall, estrogen receptor [ER]-positive, and ER-negative), colorectal, endometrial, esophageal, glioma, head/neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancer, to characterize the shared genetic basis of cancer risk. We identified thirteen pairs of cancers with statistically significant local genetic correlations across eight distinct genomic regions. Specifically, the 5p15.33 region, harboring the TERT and CLPTM1L genes, showed statistically significant local genetic correlations for multiple cancer pairs. We conducted a cross-cancer fine-mapping of the 5p15.33 region based on eight cancers that showed genome-wide significant associations in this region (ER-negative breast, colorectal, glioma, lung, melanoma, ovarian, pancreatic, and prostate cancer). We used an iterative analysis pipeline implementing a subset-based meta-analysis approach based on cancer-specific conditional analyses and identified ten independent cross-cancer associations within this region. For each signal, we conducted cross-cancer fine-mapping to prioritize the most plausible causal variants. Our findings provide a more in-depth understanding of the shared inherited basis across human cancers and expand our knowledge of the 5p15.33 region in carcinogenesis

    Notch Lineages and Activity in Intestinal Stem Cells Determined by a New Set of Knock-In Mice

    Get PDF
    The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFPSAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues
    • 

    corecore