113 research outputs found

    Molecular and Historical Aspects of Corn Belt Dent Diversity

    Get PDF
    Tens-of-thousands of open-pollinated cultivars of corn (Zea mays L.) are being maintained in germplasm banks. Knowledge of the amount and distribution of genetic variation within and among accessions can aid end users in choosing among them. We estimated molecular genetic variation and looked for influences of pedigree, adaptation, and migration in the genetic makeup of conserved Corn-Belt Dent-related germplasm. Plants sampled from 57 accessions representing Corn-Belt Dents, Northern Flints, Southern Dents, plus 12 public inbreds, were genotyped at 20 simple sequence repeat (SSR) loci. For 47 of the accessions, between 5 and 23 plants per accession were genotyped (mean = 9.3). Mean number of alleles per locus was 6.5 overall, 3.17 within accessions, and 3.20 within pooled inbreds. Mean gene diversity was 0.53 within accessions and 0.61 within pooled inbreds. Open-pollinated accessions showed a tendency toward inbreeding (FIS = 0.09), and 85% of genetic variation was shared among them. A Fitch-Margoliash tree strongly supported the distinctiveness of flint from dent germplasm but did not otherwise reveal evidence of genetic structure. Mantel tests revealed significant correlations between genetic distance and geographical (r = 0.54, P= 0.04) or maturity zone (r = 0.33, P = 0.03) distance only if flint germplasm was included in the analyses. A significant correlation (r = 0.76, P \u3c 0.01) was found between days to pollen shed and maturity zone of accession origin. Pedigree, rather than migration or selection, has most influenced the genetic structure of the extant representatives of the open-pollinated cultivars at these SSR loci

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly

    PARAMAGNETIC RESONANCE ABSORPTION. Technical Progress Report.

    No full text

    DNA-Analyse

    No full text

    Identification of temperature-sensitive mutants of the human immunodeficiency virus type 1 protease through saturation mutagenesis. Amino acid side chain requirements for temperature sensitivity

    Get PDF
    Human immunodeficiency virus type 1 encodes a protease whose activity is required for the production of infectious virus. An Escherichia coli expression and processing assay system was used to screen 285 protease mutants for temperature-sensitive activity. Fourteen protease mutants had a temperature-sensitive phenotype, and approximately half resulted from conservative amino acid substitutions. Of the 14 substitutions that conferred a temperature-sensitive phenotype, 11 substitutions occurred at 6 positions that represent 3 pairs of residues in the protease that contact each other in the three-dimensional structure. These mutants assist in pinpointing regions of the protease that are important for enzyme activity and stability

    Generation and characterization of multipotent stem cells from established dermal cultures

    Get PDF
    Human multipotent skin derived precursor cells (SKPs) are traditionally sourced from dissociated dermal tissues; therefore, donor availability may become limiting. Here we demonstrate that both normal and diseased adult human dermal fibroblasts (DF) pre-cultured in conventional monolayers are capable of forming SKPs (termed m-SKPs). Moreover, we show that these m-SKPs can be passaged and that cryopreservation of original fibroblast monolayer cultures does not reduce m-SKP yield; however, extensive monolayer passaging does. Like SKPs generated from dissociated dermis, these m-SKPs expressed nestin, fibronectin and versican at the protein level. At the transcriptional level, m-SKPs derived from normal adult human DF, expressed neural crest stem cell markers such as p75NTR, embryonic stem cell markers such as Nanog and the mesenchymal stem cell marker Dermo-1. Furthermore, appropriate stimuli induced m-SKPs to differentiate down either mesenchymal or neural lineages resulting in lipid accumulation, calcification and S100β or β-III tubulin expression (with multiple processes). m-SKP yield was greater from neonatal foreskin cultures compared to those from adult DF cultures; however, the former showed a greater decrease in m-SKP forming capacity after extensive monolayer passaging. m-SKP yield was greater from adult DF cultures expressing more alpha-smooth muscle actin (αSMA). In turn, elevated αSMA expression correlated with cells originating from specimens isolated from biopsies containing more terminal hair follicles; however, αSMA expression was lost upon m-SKP formation. Others have shown that dissociated human hair follicle dermal papilla (DP) are a highly enriched source of SKPs. However, conversely and unexpectedly, monolayer cultured human hair follicle DP cells failed to form m-SKPs whereas those from the murine vibrissae follicles did. Collectively, these findings reveal the potential for using expanded DF cultures to produce SKPs, the heterogeneity of SKP forming potential of skin from distinct anatomical locations and ages, and question the progenitor status of human hair follicle DP cells
    corecore