171 research outputs found

    Influence of site and stand factors on Hymenoscyphus fraxineus-induced basal lesions

    Get PDF
    Hymenoscyphus fraxineus is an invasive fungus in Europe and causes a severe decline affecting ash, which began in the late 1990s. One of the symptoms associated with the disease is lesions in the outer bark of the collar area. However, the aetiology of these basal lesions, and in particular the relative roles of H.fraxineus and Armillaria species, is still controversial; moreover, little is known about the influence of environmental factors on the disease epidemiology.This study therefore surveyed 42 plots located in northeastern France, in an area affected by ash decline since 2008, in order to determine which environmental factors condition the severity of lesions associated with H.fraxineus on ash collar. The spatial pattern that is a consequence of the invasive spread of the disease was taken into account in the analysis, using a spatial hierarchical Bayesian model fitted by integrated nested laplace approximation (INLA).Results show that while basal lesions are tightly associated with H.fraxineus, their severity is influenced by the Armillaria species present in the plot. Sites with vegetation indicating moist conditions, or more humid topographical positions, were associated with more developed basal lesions

    Genetic diversity and origins of the homoploid type hybrid Phytophthora×alni

    Get PDF
    Assessing the process that gives rise to hybrid pathogens is central to understanding the evolution of emerging plant diseases. Phytophthora xalni, a pathogen of alder, results from the homoploid hybridization of two related species, Phytophthora uniformis and Phytophthora xmultiformis. Describing the genetic characteristics of P. xalni should help us understand how reproductive mechanisms and historical processes shaped the population structure of this emerging hybrid pathogen. The population genetic structure of P. xalni and the relationship with its parental species were investigated using 12 microsatellites and one mitochondrial DNA (mtDNA) marker on a European collection of 379 isolates. Populations of P. xalni were dominated by one multilocus genotype (MLG). The frequency of this dominant MLG increased after the disease emergence together with a decline in diversity, suggesting that it was favored by a genetic mechanism such as drift or selection. Combined microsatellite and mtDNA results confirmed that P. xalni originated from multiple hybridization events that involved different genotypes of the progenitors. Our detailed analyses point to a geographic structure that mirrors that observed for P. uniformis in Europe. The study provides more insights on the contribution of P. uniformis, an invasive species in Europe, to the emergence of Phytophthora-induced alder decline. IMPORTANCE Our study describes an original approach to assess the population genetics of polyploid organisms using microsatellite markers. By studying the parental subgenomes present in the interspecific hybrid P. xalni, we were able to assess the geographical and temporal structure of European populations of the hybrid, shedding new light on the evolution of an emerging plant pathogen. In turn, the study of the parental subgenomes permitted us to assess some genetic characteristics of the parental species of P. xalni, P. uniformis, and P. xmultiformis, which are seldom sampled in nature. The subgenomes found in P. xalni represent a picture of the "fossilized" diversity of the parental species

    Towards IASI-New Generation (IASI-NG): impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables

    Get PDF
    Besides their strong contribution to weather forecast improvement through data assimilation, thermal infrared sounders onboard polar-orbiting platforms are now playing a key role for monitoring atmospheric composition changes. The Infrared Atmospheric Sounding Interferometer (IASI) instrument developed by the French space agency (CNES) and launched by Eumetsat onboard the Metop satellite series is providing essential inputs for weather forecasting and pollution/climate monitoring owing to its smart combination of large horizontal swath, good spectral resolution and high radiometric performance. EUMETSAT is currently preparing the next polar-orbiting program (EPS-SG) with the Metop-SG satellite series that should be launched around 2020. In this framework, CNES is studying the concept of a new instrument, the IASI-New Generation (IASI-NG), characterized by an improvement of both spectral and radiometric characteristics as compared to IASI, with three objectives: (i) continuity of the IASI/Metop series; (ii) improvement of vertical resolution; (iii) improvement of the accuracy and detection threshold for atmospheric and surface components. In this paper, we show that an improvement of spectral resolution and radiometric noise fulfill these objectives by leading to (i) a better vertical coverage in the lower part of the troposphere, thanks to the increase in spectral resolution; (ii) an increase in the accuracy of the retrieval of several thermodynamic, climate and chemistry variables, thanks to the improved signal-to-noise ratio as well as less interferences between the signatures of the absorbing species in the measured radiances. The detection limit of several atmospheric species is also improved. We conclude that IASI-NG has the potential for strongly benefiting the numerical weather prediction, chemistry and climate communities now connected through the European GMES/Copernicus initiative

    Finding Single Copy Genes Out of Sequenced Genomes for Multilocus Phylogenetics in Non-Model Fungi

    Get PDF
    Historically, fungal multigene phylogenies have been reconstructed based on a small number of commonly used genes. The availability of complete fungal genomes has given rise to a new wave of model organisms that provide large number of genes potentially useful for building robust gene genealogies. Unfortunately, cross-utilization of these resources to study phylogenetic relationships in the vast majority of non-model fungi (i.e. “orphan” species) remains an unexamined question. To address this problem, we developed a method coupled with a program named “PHYLORPH” (PHYLogenetic markers for ORPHans). The method screens fungal genomic databases (107 fungal genomes fully sequenced) for single copy genes that might be easily transferable and well suited for studies at low taxonomic levels (for example, in species complexes) in non-model fungal species. To maximize the chance to target genes with informative regions, PHYLORPH displays a graphical evaluation system based on the estimation of nucleotide divergence relative to substitution type. The usefulness of this approach was tested by developing markers in four non-model groups of fungal pathogens. For each pathogen considered, 7 to 40% of the 10–15 best candidate genes proposed by PHYLORPH yielded sequencing success. Levels of polymorphism of these genes were compared with those obtained for some genes traditionally used to build fungal phylogenies (e.g. nuclear rDNA, β-tubulin, γ-actin, Elongation factor EF-1α). These genes were ranked among the best-performing ones and resolved accurately taxa relationships in each of the four non-model groups of fungi considered. We envision that PHYLORPH will constitute a useful tool for obtaining new and accurate phylogenetic markers to resolve relationships between closely related non-model fungal species

    Unravelling hybridization in Phytophthora using phylogenomics and genome size estimation

    Get PDF
    The genus Phytophthora comprises many economically and ecologically important plant pathogens. Hybrid species have previously been identified in at least six of the 12 phylogenetic clades. These hybrids can potentially infect a wider host range and display enhanced vigour compared to their progenitors. Phytophthora hybrids therefore pose a serious threat to agriculture as well as to natural ecosystems. Early and correct identification of hybrids is therefore essential for adequate plant protection but this is hampered by the limitations of morphological and traditional molecular methods. Identification of hybrids is also important in evolutionary studies as the positioning of hybrids in a phylogenetic tree can lead to suboptimal topologies. To improve the identification of hybrids we have combined genotyping-by-sequencing (GBS) and genome size estimation on a genus-wide collection of 614 Phytophthora isolates. Analyses based on locus- and allele counts and especially on the combination of species-specific loci and genome size estimations allowed us to confirm and characterize 27 previously described hybrid species and discover 16 new hybrid species. Our method was also valuable for species identification at an unprecedented resolution and further allowed correct naming of misidentified isolates. We used both a concatenation- and a coalescent-based phylogenomic method to construct a reliable phylogeny using the GBS data of 140 non-hybrid Phytophthora isolates. Hybrid species were subsequently connected to their progenitors in this phylogenetic tree. In this study we demonstrate the application of two validated techniques (GBS and flow cytometry) for relatively low cost but high resolution identification of hybrids and their phylogenetic relations.info:eu-repo/semantics/publishedVersio

    Ash dieback

    No full text
    Interview réalisée en décembre 2012 pour le journal New Scientis

    Diversité génétique, origine et ploïdie du complexe d’espèces Phytophthora alni

    No full text
    National audienc

    Le champignon qui décime les frênes

    No full text
    Interview pour un article de presse dans Le Figaro du vendredi 2 novembre 2012 http://www.lefigaro.fr/environnement/2012/10/30/01029-20121030ARTFIG00572-le-champignon-qui-decime-les-frenes.ph
    corecore