63 research outputs found

    Bioassay design and length of time in the laboratory affect intercolonial interactions of the Formosan subterranean termite (Isoptera, Rhinotermitidae)

    Get PDF
    This study examined the effect of diet, experimental design, and length of time in the laboratory on intercolonial agonism among Formosan subterranean termite, Coptotermes formosanus Shiraki, colonies. In pairings of 12 C. formosanus Shiraki colonies collected in an urban forest, there was no significant reduction in survival of termites in 30 out of 59 colony pairs compared to colony controls, but there was <50% survival in 18 colony pairs and <10% survival in six colony pairs. There was no correlation between the level of aggressive behavior and the laboratory diet of the termites. Effect of bioassay design and length of time in the laboratory was evaluated in three colony pairs where tests were first conducted on the day of field collection, then colony pairs were retested every 7 days. Aggressive behavior decreased over time in both bioassays, but it tended to decrease more rapidly in the Petri dish tests. The rapid loss of agonism in groups of termites kept in the laboratory demonstrates that changes in environmental factors affect intercolonial agonism

    A theoretical foundation for multi-scale regular vegetation patterns

    Get PDF
    Self-organized regular vegetation patterns are widespread and thought to mediate ecosystem functions such as productivity and robustness, but the mechanisms underlying their origin and maintenance remain disputed. Particularly controversial are landscapes of overdispersed (evenly spaced) elements, such as North American Mima mounds, Brazilian murundus, South African heuweltjies, and, famously, Namibian fairy circles. Two competing hypotheses are currently debated. On the one hand, models of scale-dependent feedbacks, whereby plants facilitate neighbours while competing with distant individuals, can reproduce various regular patterns identified in satellite imagery. Owing to deep theoretical roots and apparent generality, scale-dependent feedbacks are widely viewed as a unifying and near-universal principle of regular-pattern formation despite scant empirical evidence. On the other hand, many overdispersed vegetation patterns worldwide have been attributed to subterranean ecosystem engineers such as termites, ants, and rodents. Although potentially consistent with territorial competition, this interpretation has been challenged theoretically and empirically and (unlike scale-dependent feedbacks) lacks a unifying dynamical theory, fuelling scepticism about its plausibility and generality. Here we provide a general theoretical foundation for self-organization of social-insect colonies, validated using data from four continents, which demonstrates that intraspecific competition between territorial animals can generate the large-scale hexagonal regularity of these patterns. However, this mechanism is not mutually exclusive with scale-dependent feedbacks. Using Namib Desert fairy circles as a case study, we present field data showing that these landscapes exhibit multi-scale patterning-previously undocumented in this system-that cannot be explained by either mechanism in isolation. These multi-scale patterns and other emergent properties, such as enhanced resistance to and recovery from drought, instead arise from dynamic interactions in our theoretical framework, which couples both mechanisms. The potentially global extent of animal-induced regularity in vegetation-which can modulate other patterning processes in functionally important ways-emphasizes the need to integrate multiple mechanisms of ecological self-organization

    Down Regulation of a Gene for Cadherin, but Not Alkaline Phosphatase, Associated with Cry1Ab Resistance in the Sugarcane Borer Diatraea saccharalis

    Get PDF
    The sugarcane borer, Diatraea saccharalis, is a major target pest of transgenic corn expressing Bacillus thuringiensis (Bt) proteins (i.e., Cry1Ab) in South America and the mid-southern region of the United States. Evolution of insecticide resistance in such target pests is a major threat to the durability of transgenic Bt crops. Understanding the pests' resistance mechanisms will facilitate development of effective strategies for delaying or countering resistance. Alterations in expression of cadherin- and alkaline phosphatase (ALP) have been associated with Bt resistance in several species of pest insects. In this study, neither the activity nor gene regulation of ALP was associated with Cry1Ab resistance in D. saccharalis. Total ALP enzymatic activity was similar between Cry1Ab-susceptible (Cry1Ab-SS) and -resistant (Cry1Ab-RR) strains of D. saccharalis. In addition, expression levels of three ALP genes were also similar between Cry1Ab-SS and -RR, and cDNA sequences did not differ between susceptible and resistant larvae. In contrast, altered expression of a midgut cadherin (DsCAD1) was associated with the Cry1Ab resistance. Whereas cDNA sequences of DsCAD1 were identical between the two strains, the transcript abundance of DsCAD1 was significantly lower in Cry1Ab-RR. To verify the involvement of DsCAD1 in susceptibility to Cry1Ab, RNA interference (RNAi) was employed to knock-down DsCAD1 expression in the susceptible larvae. Down-regulation of DsCAD1 expression by RNAi was functionally correlated with a decrease in Cry1Ab susceptibility. These results suggest that down-regulation of DsCAD1 is associated with resistance to Cry1Ab in D. saccharalis

    When Subterranean Termites Challenge the Rules of Fungal Epizootics

    Get PDF
    Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle

    Microsatellite genotyping of red imported fire ant (Hymenoptera: Formicidae) colonies reveals that most colonies persist in plowed pastures

    No full text
    Our study focused on colony dynamics of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), in relation to the standard practice of planting rye grass (i.e., plowing) in the fall in Louisiana. Microsatellite molecular markers were used to determine genotypes of individuals from red imported fire ant colonies. These markers allowed us to monitor treatment effect by detecting changes in number and location of colonies in response to disking of pasture plots. Previous research on mound disturbance as a form of cultural control in pastures has produced mixed results. We found that the majority of colonies persisted on plots after plowing. Mound density and mound area, 5 mo after plowing, were not significantly different among treatments. In contrast, April measurements of mound volume were significantly smaller on plowed plots compared with control plots. A closer look at the rebuilding of mounds on plowed plots, during the 5 mo, showed that mound heights stayed below pretreatment measurements and they were significantly smaller than those of undisturbed mounds. Whether plowing has potential for use as a cultural control technique in reducing the impact of red imported fire ant mounds on agricultural practices in pastures remains to be seen. Conceivably, the best application of this technique will be in combination with other control measures in an integrated pest management approach to control red imported fire ants in pastures. © 2008 Entomological Society of America
    corecore