73 research outputs found

    3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia

    Full text link
    Estimation of soil erosion 3D (E3D) provides basic information that can help manage agricultural areas sustainably, which has not been sufficiently conducted in Indonesia. Sumani watershed is main rice production area in West Sumatra which has experienced environmental problem such as soil erosion and production problem in recent years. 3D Agro-ecological land use planning based on soil erosion 3D hazard and economic feasibility analyses consist of production cost and prize data for each crop. Using a kriging method in Surfer tool program, have been developed data base from topographic map, Landsat TM image, climatic data and soil psychochemical properties. Using these data, the Universal Soil Loss Equation was used for spatial map of soil erosion 3D and proposed a 3D agro-ecological land use planning for sustainable land management in Sumani watershed. A 3D Agro-ecological land use planning was planned under which the land use type would not cause more than tolerable soil erosion (TER) and would be economically feasible. The study revealed that the annual average soil erosion from Sumani watershed was approximately 76.70 Mg ha-1yr-1 in 2011 where more than 100 Mg ha-1yr-1 was found on the cultivated sloping lands at agricultural field, which constitutes large portion of soil erosion in the watershed. Modification of land use with high CP values to one with lower CP values such as erosion control practices by reforestation, combination of mixed garden+beef+chicken (MBC), terrace (TBC) or contour cropping+beef+chicken (CBC) and sawah+buffalo+chicken (SBC) could reduce soil erosion rate by 83.2%, from 76.70 to 12.9 Mg ha-1 yr-1, with an increase in total profit from agricultural production of about 9.2% in whole Sumani watershed.Key words: CP-values, Erosion 3D, land use, Surfer Tool, USLE [How to Cite: Aflizar, AC Idowu, R Afrizal, Jamaluddin, E Syafri, Muzakir, Husnain and T Masunaga. 2013. 3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia. J Trop Soils 18 (3): 241-254. Doi: 10.5400/jts.2013.18.3.241][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.3.241]REEFERENCESAflizar, A Roni and T Masunaga. 2013. Assessment Erosion 3D hazard with USLE and Surfer Tool: A Case study of Sumani Watershed in West Sumatra Indonesia. J Trop Soil 18: 81-92 doi: 10.5400/jts.2012.18.1.81Aflizar, A Saidi, Husnain, Hermansah, Darmawan, Harmailis, H Soumura, T Wakatsuki and T Masunaga.  2010. Characterization of Soil Erosion Status in an Agricultural Watershed in West Sumatra, Indonesia. Tropics 19: 28-42.Agrell PJ, A Stam and GW Fischer. 2004. Interactive multiobjective agro-ecological land use planning: The Bungoma region in Kenya. Eur J Operat Res 158: 194-217Agus F, DK Cassel and DP Garrity. 1997. Soil-water and soil physical properties under countour hedgerow systems on sloping oxisols. Soil Till Res 40: 185-199.Blake GR and R Hartage. 1986. Bulk Density. In: A Klute (ed). Methods of  Soil Analysis, Part 1. Physical and Minerological Methods.   American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, p. 364-367. Brady NC and RR Weil. 2008. The Nature and Properties of Soils. Fourteenth edition reviced. Pearason International edition. Pearson education Japan. p. 121-171.Chris SR and H Harbor.  2002. Soil erosion assessment tools from point to regional scales-the role of geomorphologists in land management research and implication. Geomorphology 47: 189-209.Choudhury C, PM Chauhan, P Garg and HN Garg. 1996. Cost-Benefot ratio of triple pass solar air heates. Energy Convers  Manage  37: 95-116. Crasswell ET, A Sajjapongse, DJB Hawlett and AJ Dowling. 1997.  Agroforestry in the management of sloping lands in Asia and the Pacific. Agrofores Sys 38: 121-130.FAO [Food and Agriculture Organization]. 1993. Guidelines for Land Use Planning. FAO Development Series 1, FAO, Rome.FAO/IIASA [Food and Agriculture Organization/International Institute for Applied Systems Analysis]. 1991. Agro-Ecological Land Resources Assessment for Agricultural Development Planning; A Case Study of Kenya: Resource Database and Land Productivity. Main Report and 8 Technical Annexes. Rome, AGL-FAO. 9 vols. 1150 p. Gee GW and JW Bauder. 1986. Particle size analysis. In: A Klute (ed). Methods of soil Analysis, Part 1. Physical and mineralogical Methods, American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, pp. 399-404.Golden software. 2010. Surfer® 9 for windows. Golden, Colorado. Available online http://www.goldensoftware.com/products/surfer/surfer.shtml.Hammer WI. 1981. Second soil conservation consultant report AGOF/INS/78/006. Tech. Note No 10, Centre of Soil Research, Bogor.Irvem A, F Topaglu and V Uygur. 2007. Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol 336: 30-37.IITA [International Institute of Tropical  Agriculture]. 1979. Selected Methods for Soils and Plant Analysis, Manual Series No. 1, IITA, Ibadan, Nigeria, pp. 70.Iwata T, S Nakano and M Inoue. 2003. Impact of past riparian deforestation on stream communities in a tropical rain forest in Borneo. Ecol Appl 13: 461-473.Karyono. 1990. Home garden in Java: their structure and function. In: Lan-dauer K, M Brazil (eds). Tropical Home Garden, The United Nations University Press, Tokyo, pp. 138-146.Kravchenko A and DG Bullock. 1999. A comparative study of interpolation method for mapping soil properties. Agron J 91: 393-400.Kusumandari A and BR Mitchell. 1997. Soil erosion and sediment yield in forest and agroforestry areas in West Java, Indonesia. J Soil Water Cons 52: 376-380.Lee BD, RC Graham, TE Lauren, C Amrhen and RM Creasy. 2001: Spatial Distribution of Soil Chemical condition in a serpentinitic Wetland and Surrounding Landscape. Soil Sci Soc Am J 65: 1183-1196.Margareth and Arens. 1989. World Bank Environmental Department Working paper No.18. The World Bank, Washington, DC.Paranginangin N, R Sakthivadivel, NR Scoot, E Kendy and TS Steenhuis. 2004. Water accounting for conjunctive groundwater/surface water management: case of the Singkarak-Ombilin River basin, Indonesia. J Hydrol 292: 1-22.Reeve RC. 1965. Particle-size Analysis. In: CA Black, DD Evans, JL White, Ensminger and FE Clark (eds). Methods of Soil Analysis Part 1. Physical and Mineralogical Methods, American Society of Agronomy, Madison, Wisconsin, pp. 528-530. Sarainsong F, K Harashima, H Arifin, K Gandasasmita and K Sakamoto. 2007. Practical application of a land resources information system for agricultural landscape planning. Landscpe Urban Plan 79:  38-52.Schob A, J Schmidt and R Tenholtern. 2006. Derivation of site-related measures to minimize soil erosion on the watershed scale in the Saxonian loess belt using the model erosion 3D. Catena 68: 153-160.Shi ZH, CF Cai, SW Ding, TW Wang and TL Chow. 2004. Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena  55: 33-48.Soil Survey Staff. 1990. Keys to Soil Taxonomy. Washington, DC: USDA Natural Resources Conservation Service. Available online ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/1990_Keys_to_Soil_Taxonomy.pdf.Stevenson M and H Lee. 2001. Indicator of sustainability as a tool in agricultural development: portioning scientific and participatory processes. Int J Sustain Dev World Ecol 8: 57-56.Svoray T, P Bar and T Bannet. 2005. Urban land-use allocation in a Mediterranean ecotone: Habitat heterogeneity Model incorporated in a GIS using a multi-criteria mechanism. Landscape Urban Plan 72: 337-351.Takata Y, S Funukawa, J Yanai, A Mishima, K Akshalov, N Ishida and T Kosaki. 2008. Influence of crop rotation system on the spatial and temporal variation of the soil organic carbon budget in northern Kazakhstan. Soil Sci Plant Nutr, 54: 159-171.Wakatsuki T, Y Shinmura, E Otoo and GO Olaniyan. 1998. African-based paddy field system for the integrated watershed management of the small inland valley of West Africa. FAO Water Report no. 17. pp. 5-79.Wischmeier WH and DD Smith. 1978. Predicting rainfall erosion losses: a guide to conservation farming, USDA Handbook: No. 537 US Department of Agriculture, Washington, DC pp 1-58.World Bank. 1989. World Bank Technical Paper Number 127. In: Doolette JB and WB Magrath (eds). Watershed Development in Asia. Strategies and Technologies Available online: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/1999/09/17/000178830_98101904135527/Rendered/INDEX/multi_page.txt.Zhang Y, H Yang, M Du, X Tang, H Zhang and B Peng. 2003. Soil erosion study on hillside in Southern Jiangsu province the cesium-137 tracer technique. Soil Sci Plant Nutr 49: 85-92

    Deep learning-based growth prediction system: A use case of china agriculture.

    Get PDF
    Agricultural advancements have significantly impacted people’s lives and their surroundings in recent years. The insufficient knowledge of the whole agricultural production system and conventional ways of irrigation have limited agricultural yields in the past. The remote sensing innovations recently implemented in agriculture have dramatically revolutionized production efficiency by offering unparalleled opportunities for convenient, versatile, and quick collection of land images to collect critical details on the crop’s conditions. These innovations have enabled automated data collection, simulation, and interpretation based on crop analytics facilitated by deep learning techniques. This paper aims to reveal the transformative patterns of old Chinese agrarian development and fruit production by focusing on the major crop production (from 1980 to 2050) taking into account various forms of data from fruit production (e.g., apples, bananas, citrus fruits, pears, and grapes). In this study, we used production data for different fruits grown in China to predict the future production of these fruits. The study employs deep neural networks to project future fruit production based on the statistics issued by China’s National Bureau of Statistics on the total fruit growth output for this period. The proposed method exhibits encouraging results with an accuracy of 95.56% calculating by accuracy formula based on fruit production variation. Authors further provide recommendations on the AGR-DL (agricultural deep learning) method being helpful for developing countries. The results suggest that the agricultural development in China is acceptable but demands more improvement and government needs to prioritize expanding the fruit production by establishing new strategies for cultivators to boost their performance

    High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season

    Get PDF
    Background Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. Methods In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of three months (June-August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. Results The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms. The mean heterotrophic flux was 1244.7 ± SE 149.2 mg m-2h-1 and 663.8 ± SE 102.2 mg m-2h-1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 944 ± SE 99.7 mg m-2h-1 and 1962 ± SE 246 mg m-2h-1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m-2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. Conclusions The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage

    La introducción de genes cry1Ab en algodón (Gossypium hirsutum) mejora la resistencia contra las plagas de lepidópteros (Helicoverpa armigera)

    Get PDF
    The significant breakthrough in plant biotechnology is the development of techniques to transform genes from unrelated sources into commercially important crop plants to develop resistance against insect pests. A local cotton cultivar MNH-93 was transformed through Agrobacterium tumefaciens strain C58C1 assisted by bombardment with tungsten particles. The Agrobacterium strain contained the recombinant binary vector pKMAB harboring cry1Ab under 35S promoter. Neomycin phosphotransferase (nptII) gene was used as a selectable marker at a concentration of 50 mg L–1. The transformation efficiency remained 0.26%. The primary transformants were analyzed for transgene integration and expression through PCR and Southern Blotting and Western dot blot. The gene copy number was determined by Southern analysis in order to find out the cry1Ab integration sites. The Bt protein being produced in the transgenic plants was quantified using ImageQuant software, which ranged from 0.00 to 1.35% of the total protein. The positive plant seeds obtained from T0 progeny were further raised under greenhouse and field conditions to evaluate their field performance. Leaf biotoxicity assays were performed to determine the efficacy of introduced gene. The results showed that transgenic lines in T1 progeny have appreciable level of resistance (40-60%) against lepidopteran pests in both green house and field conditions.Un importante avance en biotecnología vegetal ha sido el desarrollo de técnicas para transformar genes provenientes de fuentes no relacionadas en cultivos de importancia comercial para desarrollar resistencia contra plagas de insectos. Se transformó el cultivar local de algodón MNH-93 por medio de la cepa C58C1 de Agrobacterium tumefaciens mediante bombardeo con partículas de tungsteno. La cepa de Agrobacterium contenía el vector binario recombinante pKMAB que albergaba cry1Ab bajo el promotor 35S. Se utilizó el gen neomicina fosfotransferasa (nptII) a una concentración de 50 mg L–1 como marcador genético. La eficiencia de transformación se mantuvo en un 0,26%. Los transformantes primarios se analizaron para la integración y expresión del gen mediante PCR, Southern blotting y Western dot blot. El número de copias del gen se determinó por Southern blot a fin de conocer los sitios de integración del cry1Ab. Se cuantificó la proteína Bt producida en las plantas transgénicas utilizando el software ImageQuant, que varió de 0,00 hasta 1,35% de las proteínas totales. Las semillas de plantas positivas obtenidas a partir de la progenie T0 se crecieron en condiciones de invernadero y de campo para evaluar su comportamiento en el campo. Se realizaron ensayos de biotoxicidad de la hoja para determinar la eficacia del gen introducido. Los resultados mostraron que las líneas transgénicas en la progenie T1 tienen un nivel apreciable de resistencia (40-60%) contra las plagas de lepidópteros, tanto en condiciones de invernadero como de campo

    Introduction of cry1Ab gene into cotton (Gossypium hirsutum) enhances resistance against Lepidopteran pest (Helicoverpa armigera)

    No full text
    The significant breakthrough in plant biotechnology is the development of techniques to transform genes from unrelated sources into commercially important crop plants to develop resistance against insect pests. A local cotton cultivar MNH- 93 was transformed through Agrobacterium tumefaciens strain C58C1 assisted by bombardment with tungsten particles. The Agrobacterium strain contained the recombinant binary vector pKMAB harboring cry1Ab under 35S promoter. Neomycin phosphotransferase (nptII) gene was used as a selectable marker at a concentration of 50 mg L�1. The transformation efficiency remained 0.26%. The primary transformants were analyzed for transgene integration and expression through PCR and Southern Blotting and Western dot blot. The gene copy number was determined by Southern analysis in order to find out the cry1Ab integration sites. The Bt protein being produced in the transgenic plants was quantified using ImageQuant software, which ranged from 0.00 to 1.35% of the total protein. The positive plant seeds obtained from T0 progeny were further raised under greenhouse and field conditions to evaluate their field performance. Leaf biotoxicity assays were performed to determine the efficacy of introduced gene. The results showed that transgenic lines in T1 progeny have appreciable level of resistance (40-60%) against lepidopteran pests in both green house and field conditions.Un importante avance en biotecnología vegetal ha sido el desarrollo de técnicas para transformar genes provenientes de fuentes no relacionadas en cultivos de importancia comercial para desarrollar resistencia contra plagas de insectos. Se transformó el cultivar local de algodón MNH-93 por medio de la cepa C58C1 de Agrobacterium tumefaciens mediante bombardeo con partículas de tungsteno. La cepa de Agrobacterium contenía el vector binario recombinante pKMAB que albergaba cry1Ab bajo el promotor 35S. Se utilizó el gen neomicina fosfotransferasa (nptII) a una concentración de 50 mg L�1 como marcador genético. La eficiencia de transformación se mantuvo en un 0,26%. Los transformantes primarios se analizaron para la integración y expresión del gen mediante PCR, Southern blotting y Western dot blot. El número de copias del gen se determinó por Southern blot a fin de conocer los sitios de integración del cry1Ab. Se cuantificó la proteína Bt producida en las plantas transgénicas utilizando el software ImageQuant, que varió de 0,00 hasta 1,35% de las proteínas totales. Las semillas de plantas positivas obtenidas a partir de la progenie T0 se crecieron en condiciones de invernadero y de campo para evaluar su comportamiento en el campo. Se realizaron ensayos de biotoxicidad de la hoja para determinar la eficacia del gen introducido. Los resultados mostraron que las líneas transgénicas en la progenie T1 tienen un nivel apreciable de resistencia (40-60%) contra las plagas de lepidópteros, tanto en condiciones de invernadero como de campo
    • …
    corecore