28 research outputs found

    The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization

    Get PDF
    The survival motor neuron (SMN) complex fulfils essential functions in the assembly of snRNPs, which are key components in the splicing of pre-mRNAs. Little is known about the regulation of SMN complex activity by posttranslational modification despite its complicated phosphorylation pattern. Several phosphatases had been implicated in the regulation of SMN, including the nuclear phosphatases PPM1G and PP1γ. Here we systematically screened all human phosphatase gene products for a regulatory role in the SMN complex. We used the accumulation of SMN in Cajal bodies of intact proliferating cells, which actively assemble snRNPs, as a readout for unperturbed SMN complex function. Knockdown of 29 protein phosphatases interfered with SMN accumulation in Cajal bodies, suggesting impaired SMN complex function, among those the catalytically inactive, non–receptor-type tyrosine phosphatase PTPN23/HD-PTP. Knockdown of PTPN23 also led to changes in the phosphorylation pattern of SMN without affecting the assembly of the SMN complex. We further show interaction between SMN and PTPN23 and document that PTPN23, like SMN, shuttles between nucleus and cytoplasm. Our data provide the first comprehensive screen for SMN complex regulators and establish a novel regulatory function of PTPN23 in maintaining a highly phosphorylated state of SMN, which is important for its proper function in snRNP assembly

    Beneficial impact of levosimendan in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials

    Get PDF
    INTRODUCTION: The incidence of Acute Kidney Injury is nowadays high in critically ill patients. Its etiology is multifactorial and a primary role is played by low cardiac output syndrome. Everything targeted to normalize cardiac output should increase the renal perfusion and abolish the secondary vasoconstriction. Levosimendan is a calcium sensitizer drug with inotropic properties that improves cardiac output and seems to increase renal blood flow. The aim of this meta-analysis was to evaluate the role of levosimendan in critically ill patients with or at risk of Acute Kidney Injury. METHODS: We performed a meta-analysis of randomized controlled trials searching for trials that compared levosimendan with any comparator. The endpoints were the number of patients receiving Renal Replacement Therapy after randomization and the number of patients developing Acute Kidney Injury. RESULTS: Final analysis included 33 trials and 3,879 patients (2,024 levosimendan and 1,855 control). The overall analysis showed that the use of levosimendan was associated with a significant reduction in the risk of Renal Replacement Therapy (17 of 492 [3.5%] in the levosimendan group versus 37 of 427 [8.7%] in the control group, relative risk =0.52 [0.32 to 0.86], p for effect =0.01) and of Acute Kidney Injury (114 of 1,598 [7.1%] in the levosimendan group versus 143 of 1,529 [9.4%] in the control arm, relative risk =0.79 [0.63 to 0.99], p for effect =0.048). CONCLUSIONS: This meta-analysis suggests that the use of levosimendan is associated with a significant reduction of Renal Replacement Therapy in critically ill patients

    The clinical relevance of oliguria in the critically ill patient : Analysis of a large observational database

    Get PDF
    Funding Information: Marc Leone reports receiving consulting fees from Amomed and Aguettant; lecture fees from MSD, Pfizer, Octapharma, 3 M, Aspen, Orion; travel support from LFB; and grant support from PHRC IR and his institution. JLV is the Editor-in-Chief of Critical Care. The other authors declare that they have no relevant financial interests. Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Urine output is widely used as one of the criteria for the diagnosis and staging of acute renal failure, but few studies have specifically assessed the role of oliguria as a marker of acute renal failure or outcomes in general intensive care unit (ICU) patients. Using a large multinational database, we therefore evaluated the occurrence of oliguria (defined as a urine output 16 years) patients in the ICON audit who had a urine output measurement on the day of admission were included. To investigate the association between oliguria and mortality, we used a multilevel analysis. Results: Of the 8292 patients included, 2050 (24.7%) were oliguric during the first 24 h of admission. Patients with oliguria on admission who had at least one additional 24-h urine output recorded during their ICU stay (n = 1349) were divided into three groups: transient - oliguria resolved within 48 h after the admission day (n = 390 [28.9%]), prolonged - oliguria resolved > 48 h after the admission day (n = 141 [10.5%]), and permanent - oliguria persisting for the whole ICU stay or again present at the end of the ICU stay (n = 818 [60.6%]). ICU and hospital mortality rates were higher in patients with oliguria than in those without, except for patients with transient oliguria who had significantly lower mortality rates than non-oliguric patients. In multilevel analysis, the need for RRT was associated with a significantly higher risk of death (OR = 1.51 [95% CI 1.19-1.91], p = 0.001), but the presence of oliguria on admission was not (OR = 1.14 [95% CI 0.97-1.34], p = 0.103). Conclusions: Oliguria is common in ICU patients and may have a relatively benign nature if only transient. The duration of oliguria and need for RRT are associated with worse outcome.publishersversionPeer reviewe

    Phosphoregulation of the human SMN complex

    No full text
    The survival motor neuron (SMN) complex is a macromolecular machine comprising 9 core proteins: SMN, Gemins2–8 and unrip in vertebrates. It performs tasks in RNA metabolism including the cytoplasmic assembly of spliceosomal small nuclear ribonucleoprotein particles (snRNPs). The SMN complex also localizes to the nucleus, where it accumulates in Cajal Bodies (CB) and may function in transcription and/or pre-mRNA splicing. The SMN complex is subject to extensive phosphorylation. Detailed understanding of SMN complex regulation necessitates a comprehensive analysis of these post-translational modifications. Here, we report on the first comprehensive phosphoproteome analysis of the intact human SMN complex, which identify 48 serine/threonine phosphosites in the complex. We find that 7 out of 9 SMN components of the intact complex are phosphoproteins and confidently place 29 phosphorylation sites, 12 of them in SMN itself. By the generation of multi non-phosphorylatable or phosphomimetic variants of SMN, respectively, we address to which extent phosphorylation regulates SMN complex function and localization. Both phosphomimetic and non-phosphorylatable variants assemble into intact SMN complexes and can compensate the loss of endogenous SMN in snRNP assembly at least to some extent. However, they partially or completely fail to target to nuclear Cajal bodies. Moreover, using a mutant of SMN, which cannot be phosphorylated on previously reported tyrosine residues, we provide first evidence that this PTM regulates SMN localization and nuclear accumulation. Our data suggest complex regulatory cues mediated by phosphorylation of serine/threonine and tyrosine residues, which control the subcellular localization of the SMN complex and its accumulation in nuclear CB

    Cajal-body formation correlates with differential coilin phosphorylation in primary and transformed cell lines

    No full text
    Cajal bodies (CBs) are nuclear structures that are thought to have diverse functions, including small nuclear ribonucleoprotein (snRNP) biogenesis. The phosphorylation status of coilin, the CB marker protein, might impact CB formation. We hypothesize that primary cells, which lack CBs, contain different phosphoisoforms of coilin compared with that found in transformed cells, which have CBs. Localization, self-association and fluorescence recovery after photobleaching (FRAP) studies on coilin phosphomutants all suggest this modification impacts the function of coilin and may thus contribute towards CB formation. Two-dimensional gel electrophoresis demonstrates that coilin is hyperphosphorylated in primary cells compared with transformed cells. mRNA levels of the nuclear phosphatase PPM1G are significantly reduced in primary cells and expression of PPM1G in primary cells induces CBs. Additionally, PPM1G can dephosphorylate coilin in vitro. Surprisingly, however, expression of green fluorescent protein alone is sufficient to form CBs in primary cells. Taken together, our data support a model whereby coilin is the target of an uncharacterized signal transduction cascade that responds to the increased transcription and snRNP demands found in transformed cells
    corecore