39 research outputs found

    Circulating microparticles in patients with chronic hepatitis C and changes during direct-acting antiviral therapy

    Get PDF
    Background. Microparticles (MPs) are heterogeneous vesicles derived from membranes of different cells. Between 70 to 90% of MPs detected in blood originate from platelets. The release of MPs is associated with proinflammatory and procoagulant states. Elevated levels of MPs have been found in different diseases. We investigated MPs levels in patients with chronic hepatitis C (CHC) and changes in level during treatment using direct-acting antivirotics (DAA). Patients and Methods. Thirty-six patients with CHC and forty healthy volunteers were included in the study. Concentrations of MPs were determined indirectly by measuring their procoagulant activity in plasma at baseline, end of therapy (EOT), and 12 weeks after EOT when the sustained virological response was assessed (SVR12). Results. All patients achieved SVR12, which was associated with rapid improvement of markers of liver damage and function as well as liver stiffness (P=0.002). MPs levels were significantly higher in CHC patients than in healthy volunteers (P<0.001). No statistically significant decrease was found observed between baseline and SVR12 (P=0,330). Analysis of subpopulations with minimal fibrosis F0-1 (P=0.647), advanced fibrosis F2-4 (P=0.370), women(P=0.847), men (P=0.164) and genotype 1 (P=0.077) showed no significant changes during the follow-up period. Conclusions. MPs levels are higher in CHC patients and remain elevated shortly after achieving SVR. Higher concentrations of MPs in plasma are probably caused by a chronic uncontrolled exaggerated inflammatory response caused by CHC. Longer observation would probably confirm the significance of MPs levels decrease because normalization of liver function, inflammation, and structure after SVR requires more than 12 weeks

    Clinical characteristics of patients with tick-borne encephalitis (Tbe) : A European multicentre study from 2010 to 2017

    Get PDF
    Funding Information: Conflicts of Interest: W.Z. received financial support from GSK, Pfizer, Merck, and Sanofi for organizing the “Graz Vaccination Day”. Funding Information: Funding: This study was financially supported by Land Steiermark (Office of the Regional Government of Styria, Department of Health Care and Science, Unit of Science and Research, Austria). D.R., L.K. and M.P. were supported by the Czech Ministry of Health (grant No. NV19-05-00457). P.B. and F.S. were supported by the Slovenian Research Agency (grant. No P3-0296). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Tick-borne encephalitis (TBE) virus is a major cause of central nervous system infections in endemic countries. Here, we present clinical and laboratory characteristics of a large international cohort of patients with confirmed TBE using a uniform clinical protocol. Patients were recruited in eight centers from six European countries between 2010 and 2017. A detailed description of clinical signs and symptoms was recorded. The obtained information enabled a reliable classification in 553 of 555 patients: 207 (37.3%) had meningitis, 273 (49.2%) meningoencephalitis, 15 (2.7%) meningomyelitis, and 58 (10.5%) meningoencephalomyelitis; 41 (7.4%) patients had a peripheral paresis of extremities, 13 (2.3%) a central paresis of extremities, and 25 (4.5%) had single or multiple cranial nerve palsies. Five (0.9%) patients died during acute illness. Outcome at discharge was recorded in 298 patients. Of 176 (59.1%) patients with incomplete recovery, 80 (27%) displayed persisting symptoms or signs without recovery expectation. This study provides further evidence that TBE is a severe disease with a large proportion of patients with incomplete recovery. We suggest monitoring TBE in endemic European countries using a uniform protocol to record the full clinical spectrum of the disease.publishersversionPeer reviewe

    Effectiveness of the adapted bivalent mRNA COVID-19 vaccines against hospitalisation in individuals aged ≥ 60 years during the Omicron XBB lineage-predominant period: VEBIS SARI VE network, Europe, February to August, 2023

    Get PDF
    Members of the European Hospital Vaccine Effectiveness Group: Portugal: Ana Paula Rodrigues, Débora Pereira, Susana Costa Maia e Silva, Paula Pinto, Cristina Bárbara, António Pais de Lacerda, Raquel Guiomar and Camila Henriques.The European Medicines Agency (EMA) authorised four adapted bivalent mRNA COVID-19 vaccines for use against COVID-19 in September/October 2022: Comirnaty (BNT162b2; Pfizer-BioNTech) and Spikevax (mRNA-1273; Moderna) Original/Omicron BA.1 and Original/Omicron BA.4–5 [1]. During autumn 2022, all European Union/European Economic Area (EU/EEA) countries had vaccination campaigns in place to administer a booster dose, with several countries using the adapted bivalent vaccines [2]. The Omicron-descendent XBB lineage and XBB.1.5 sub-lineage became variants of interest in March 2023 [3]. We estimated the effectiveness of the COVID-19 bivalent vaccines against hospitalisation with PCR-confirmed SARS-CoV-2 infection among patients aged ≥ 60 years with severe acute respiratory infection (SARI) during the XBB lineage-predominant period.The ‘Vaccine Effectiveness, Burden and Impact Studies studies’ (VEBIS) is a project of the European Centre for Disease Prevention and Control (ECDC) run under the framework con tract No. ECDC/2021/016.info:eu-repo/semantics/publishedVersio

    VACCELERATE Site Network: Real-time definition of clinical study capacity in Europe

    Get PDF
    Background: The inconsistent European vaccine trial landscape rendered the continent of limited interest for vaccine developers. The VACCELERATE consortium created a network of capable clinical trial sites throughout Europe. VACCELERATE identifies and provides access to state-of-the-art vaccine trial sites to accelerate clinical development of vaccines. Methods: Login details for the VACCELERATE Site Network (vaccelerate.eu/site-network/) questionnaire can be obtained after sending an email to. Interested sites provide basic information, such as contact details, affiliation with infectious disease networks, main area of expertise, previous vaccine trial experience, site infrastructure and preferred vaccine trial settings. In addition, sites can recommend other clinical researchers for registration in the network. If directly requested by a sponsor or sponsor representative, the VACCELERATE Site Network pre-selects vaccine trial sites and shares basic study characteristics provided by the sponsor. Interested sites provide feedback with short surveys and feasibility questionnaires developed by VACCELERATE and are connected with the sponsor to initiate the site selection process. Results: As of April 2023, 481 sites from 39 European countries have registered in the VACCELERATE Site Network. Of these, 137 (28.5 %) sites have previous experience conducting phase I trials, 259 (53.8 %) with phase II, 340 (70.7 %) with phase III, and 205 (42.6 %) with phase IV trials, respectively. Infectious diseases were reported as main area of expertise by 274 sites (57.0 %), followed by any kind of immunosuppression by 141 (29.3 %) sites. Numbers are super additive as sites may report clinical trial experience in several indications. Two hundred and thirty-one (47.0 %) sites have the expertise and capacity to enrol paediatric populations and 391 (79.6 %) adult populations. Since its launch in October 2020, the VACCELERATE Site Network has been used 21 times for academic and industry trials, mostly interventional studies, focusing on different pathogens such as fungi, monkeypox virus, Orthomyxoviridae/influenza viruses, SARS-CoV-2, or Streptococcus pneumoniae/pneumococcus. Conclusions: The VACCELERATE Site Network enables a constantly updated Europe-wide mapping of experienced clinical sites interested in executing vaccine trials. The network is already in use as a rapid-turnaround single contact point for the identification of vaccine trials sites in Europe.The VACCELERATE Site Network has received funding from the European Union’s Horizon 2020 research and innovation pro gramme (grant agreement No 101037867) and the German Federal Ministry of Education and Research (Bundesministerium für Bil dung und Forschung [BMBF]) (grant agreement No BMBF01KX2040).S

    Vaccine effectiveness against COVID-19 hospitalisation in adults (≥ 20 years) during Alpha- and Delta-dominant circulation: I-MOVE-COVID-19 and VEBIS SARI VE networks, Europe, 2021

    Get PDF
    Members of the I-MOVE-COVID-19 and VEBIS hospital study teams (in addition to the named authors): Svjetlana Karabuva, Petra Tomaš Petrić, Marija Marković, Sandra Ljubičić, Bojana Mahmutović, Irena Tabain, Petra Smoljo, Iva Pem Novosel, Tanya Melillo, John Paul Cauchi, Benédicte Lissoir, Xavier Holemans, Marc Hainaut, Nicolas Dauby, Benedicte Delaere, Marc Bourgeois, Evelyn Petit, Marijke Reynders, Door Jouck, Koen Magerman, Marieke Bleyen, Melissa Vermeulen, Sébastien Fierens, François Dufrasne, Siel Daelemans, Ala’a Al Kerwi, Francoise Berthet, Guy Fagherazzi, Myriam Alexandre, Charlene Bennett, Jim Christle, Jeff Connell, Peter Doran, Laura Feeney, Binita Maharjan, Sinead McDermott, Rosa McNamara, Nadra Nurdin, Salif Mamadou Cissé, Anne-Sophie L'Honneur, Xavier Duval, Yolande Costa, Fidouh Nadhira, Florence Galtier, Laura Crantelle, Vincent Foulongne, Phillipe Vanhems, Sélilah Amour, Bruno Lina, Fabrice Lainé, Laetitia Gallais, Gisèle Lagathu, Anna Maisa, Yacine Saidi, Christine Durier, Rebecca Bauer, Ana Paula Rodrigues, Adriana Silva, Raquel Guiomar, Margarida Tavares, Débora Pereira, Maria José Manata, Heidi Gruner, André Almeida, Paula Pinto, Cristina Bárbara, Itziar Casado, Ana Miqueleiz, Ana Navascués, Camino Trobajo-Sanmartín, Miguel Fernández-Huerta, María Eugenia Portillo, Carmen Ezpeleta, Nerea Egüés, Manuel García Cenoz, Eva Ardanaz, Marcela Guevara, Conchi Moreno-Iribas, Hana Orlíková, Carmen Mihaela Dorobat, Carmen Manciuc, Simin Aysel Florescu, Alexandru Marin, Sorin Dinu, Catalina Pascu, Alina Ivanciuc, Iulia Bistriceanu, Mihaela Oprea, Maria Elena Mihai, Silke Buda, Ute Preuss, Marianne Wedde, Auksė Mickienė, Giedrė Gefenaitė, Alain Moren, Anthony NardoneIntroduction: Two large multicentre European hospital networks have estimated vaccine effectiveness (VE) against COVID-19 since 2021. Aim: We aimed to measure VE against PCR-confirmed SARS-CoV-2 in hospitalised severe acute respiratory illness (SARI) patients ≥ 20 years, combining data from these networks during Alpha (March–June)- and Delta (June–December)-dominant periods, 2021. Methods: Forty-six participating hospitals across 14 countries follow a similar generic protocol using the test-negative case–control design. We defined complete primary series vaccination (PSV) as two doses of a two-dose or one of a single-dose vaccine ≥ 14 days before onset. Results: We included 1,087 cases (538 controls) and 1,669 cases (1,442 controls) in the Alpha- and Delta-dominant periods, respectively. During the Alpha period, VE against hospitalisation with SARS-CoV2 for complete Comirnaty PSV was 85% (95% CI: 69–92) overall and 75% (95% CI: 42–90) in those aged ≥ 80 years. During the Delta period, among SARI patients ≥ 20 years with symptom onset ≥ 150 days from last PSV dose, VE for complete Comirnaty PSV was 54% (95% CI: 18–74). Among those receiving Comirnaty PSV and mRNA booster (any product) ≥ 150 days after last PSV dose, VE was 91% (95% CI: 57–98). In time-since-vaccination analysis, complete all-product PSV VE was > 90% in those with their last dose < 90 days before onset; ≥ 70% in those 90–179 days before onset. Conclusions: Our results from this EU multi-country hospital setting showed that VE for complete PSV alone was higher in the Alpha- than the Delta-dominant period, and addition of a first booster dose during the latter period increased VE to over 90%.Key public health message: - What did you want to address in this study? To understand how well the COVID-19 vaccine was performing in Europe against hospitalisation during SARS-CoV-2 Alpha and Delta variant periods, we present vaccine effectiveness results from a multi-country study of complete and booster dose COVID-19 vaccination among adults (aged 20 years and over). - What have we learnt from this study? Between March and June 2021 (Alpha period), vaccine effectiveness against hospitalisation with laboratory-confirmed SARS-CoV-2 was 43% for partial vaccination and 86% for complete vaccination. For June to December 2021 (Delta period), vaccine effectiveness for complete vaccination was lower (52%) but with addition of an mRNA booster dose, effectiveness reached 91%, and remained > 90% up to 119 days after the booster dose. - What are the implications of your findings for public health? In Europe in 2021, COVID-19 vaccine effectiveness results for the Alpha period indicated an excellent benefit for preventing hospitalisation after complete vaccination. During Delta variant circulation, however, a booster dose was required to achieve this level of effectiveness, and this was maintained for up to 4 months post booster.info:eu-repo/semantics/publishedVersio

    Vaccine effectiveness against COVID-19 hospitalisation in adults (≥ 20 years) during Omicron-dominant circulation: I-MOVE-COVID-19 and VEBIS SARI VE networks, Europe, 2021 to 2022

    Get PDF
    Introduction: The I-MOVE-COVID-19 and VEBIS hospital networks have been measuring COVID-19 vaccine effectiveness (VE) in participating European countries since early 2021. Aim: We aimed to measure VE against PCR-confirmed SARS-CoV-2 in patients ≥ 20 years hospitalised with severe acute respiratory infection (SARI) from December 2021 to July 2022 (Omicron-dominant period). Methods: In both networks, 46 hospitals (13 countries) follow a similar test-negative case-control protocol. We defined complete primary series vaccination (PSV) and first booster dose vaccination as last dose of either vaccine received ≥ 14 days before symptom onset (stratifying first booster into received < 150 and ≥ 150 days after last PSV dose). We measured VE overall, by vaccine category/product, age group and time since first mRNA booster dose, adjusting by site as a fixed effect, and by swab date, age, sex, and presence/absence of at least one commonly collected chronic condition. Results: We included 2,779 cases and 2,362 controls. The VE of all vaccine products combined against hospitalisation for laboratory-confirmed SARS-CoV-2 was 43% (95% CI: 29-54) for complete PSV (with last dose received ≥ 150 days before onset), while it was 59% (95% CI: 51-66) after addition of one booster dose. The VE was 85% (95% CI: 78-89), 70% (95% CI: 61-77) and 36% (95% CI: 17-51) for those with onset 14-59 days, 60-119 days and 120-179 days after booster vaccination, respectively. Conclusions: Our results suggest that, during the Omicron period, observed VE against SARI hospitalisation improved with first mRNA booster dose, particularly for those having symptom onset < 120 days after first booster dose.Key public health message: 1. What did you want to address in this study? In order to understand how well the COVID-19 vaccine is performing in Europe against hospitalisation during the period when the SARS-CoV-2 Omicron variant was circulating, we investigated vaccine effectiveness using data from a multi-country study of complete and booster-dose COVID-19 vaccination among adults aged 20 years and over. 2. What have we learnt from this study? Between December 2021 and July 2022, vaccine effectiveness against hospitalisation with laboratory-confirmed SARS-CoV-2 was 43% for complete vaccination. With addition of an mRNA booster dose, effectiveness was 59% overall. It was higher when onset of illness was close to the date of the last vaccination, at 85% when last booster dose was 14–59 days before onset, at 70% for 60–119 days, and falling below 40% for 120–179 days. 3. What are the implications of your findings for public health? In European hospital settings in 2022, during the Omicron period, COVID-19 mRNA booster vaccine provided an improved benefit for preventing hospitalisation, particularly if disease onset was within 4 months of receiving the booster dose.info:eu-repo/semantics/publishedVersio
    corecore