201 research outputs found

    The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inherited bacteria have come to be recognised as important components of arthropod biology. In addition to mutualistic symbioses, a range of other inherited bacteria are known to act either as reproductive parasites or as secondary symbionts. Whilst the incidence of the α-proteobacterium <it>Wolbachia </it>is relatively well established, the current knowledge of other inherited bacteria is much weaker. Here, we tested 136 arthropod species for a range of inherited bacteria known to demonstrate reproductive parasitism, sampling each species more intensively than in past surveys.</p> <p>Results</p> <p>The inclusion of inherited bacteria other than <it>Wolbachia </it>increased the number of infections recorded in our sample from 33 to 57, and the proportion of species infected from 22.8% to 32.4%. Thus, whilst <it>Wolbachia </it>remained the dominant inherited bacterium, it alone was responsible for around half of all inherited infections of the bacteria sampled, with members of the <it>Cardinium</it>, <it>Arsenophonus </it>and <it>Spiroplasma ixodetis </it>clades each occurring in 4% to 7% of all species. The observation that infection was sometimes rare within host populations, and that there was variation in presence of symbionts between populations indicates that our survey will itself underscore incidence.</p> <p>Conclusion</p> <p>This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-<it>Wolbachia </it>bacteria and their hosts.</p

    Recurrence of Dupuytren’s contracture: A consensus-based definition

    Get PDF
    Purpose: One of the major determinants of Dupyutren disease (DD) treatment efficacy is recurrence of the contracture. Unfortunately, lack of agreement in the literature on what constitutes recurrence makes it nearly impossible to compare the multiple treatments alternatives available today. The aim of this study is to bring an unbiased pool of experts to agree upon what would be considered a recurrence of DD after treatment; and from that consensus establish a much-needed definition for DD recurrence. Methods: To reach an expert consensus on the definition of recurrence we used the Delphi method and invited 43 Dupuytren’s research and treatment experts from 10 countries to participate by answering a series of questionnaire rounds. After each round the answers were analyzed and the experts received a feedback report with another questionnaire round to further hone in of the definition. We defined consensus when at least 70% of the experts agreed on a topic. Results: Twenty-one experts agreed to participate in this study. After four consensus rounds, we agreed that DD recurrence should be defined as “more than 20 degrees of contracture recurrence in any treated joint at one year post-treatment compared to six weeks post-treatment”. In addition, “recurrence should be reported individually for every treated joint” and afterwards measurements should be repeated and reported yearly. Conclusion: This study provides the most comprehensive to date definition of what should be considered recurrence of DD. These standardized criteria should allow us to better evaluate the many treatment alternatives

    Depletion of somatic mutations in splicing-associated sequences in cancer genomes

    Get PDF
    Abstract Background An important goal of cancer genomics is to identify systematically cancer-causing mutations. A common approach is to identify sites with high ratios of non-synonymous to synonymous mutations; however, if synonymous mutations are under purifying selection, this methodology leads to identification of false-positive mutations. Here, using synonymous somatic mutations (SSMs) identified in over 4000 tumours across 15 different cancer types, we sought to test this assumption by focusing on coding regions required for splicing. Results Exon flanks, which are enriched for sequences required for splicing fidelity, have ~ 17% lower SSM density compared to exonic cores, even after excluding canonical splice sites. While it is impossible to eliminate a mutation bias of unknown cause, multiple lines of evidence support a purifying selection model above a mutational bias explanation. The flank/core difference is not explained by skewed nucleotide content, replication timing, nucleosome occupancy or deficiency in mismatch repair. The depletion is not seen in tumour suppressors, consistent with their role in positive tumour selection, but is otherwise observed in cancer-associated and non-cancer genes, both essential and non-essential. Consistent with a role in splicing modulation, exonic splice enhancers have a lower SSM density before and after controlling for nucleotide composition; moreover, flanks at the 5’ end of the exons have significantly lower SSM density than at the 3’ end. Conclusions These results suggest that the observable mutational spectrum of cancer genomes is not simply a product of various mutational processes and positive selection, but might also be shaped by negative selection

    Identification of a 4-microRNA Signature for Clear Cell Renal Cell Carcinoma Metastasis and Prognosis

    Get PDF
    Renal cell carcinoma (RCC) metastasis portends a poor prognosis and cannot be reliably predicted. Early determination of the metastatic potential of RCC may help guide proper treatment. We analyzed microRNA (miRNA) expression in clear cell RCC (ccRCC) for the purpose of developing a miRNA expression signature to determine the risk of metastasis and prognosis. We used the microarray technology to profile miRNA expression of 78 benign kidney and ccRCC samples. Using 28 localized and metastatic ccRCC specimens as the training cohort and the univariate logistic regression and risk score methods, we developed a miRNA signature model in which the expression levels of miR-10b, miR-139-5p, miR-130b and miR-199b-5p were used to determine the status of ccRCC metastasis. We validated the signature in an independent 40-sample testing cohort of different stages of primary ccRCCs using the microarray data. Within the testing cohort patients who had at least 5 years follow-up if no metastasis developed, the signature showed a high sensitivity and specificity. The risk status was proven to be associated with the cancer-specific survival. Using the most stably expressed miRNA among benign and tumorous kidney tissue as the internal reference for normalization, we successfully converted his signature to be a quantitative PCR (qPCR)-based assay, which showed the same high sensitivity and specificity. The 4-miRNA is associated with ccRCC metastasis and prognosis. The signature is ready for and will benefit from further large clinical cohort validation and has the potential for clinical application

    Positive Selection Shaped the Convergent Evolution of Independently Expanded Kallikrein Subfamilies Expressed in Mouse and Rat Saliva Proteomes

    Get PDF
    We performed proteomics studies of salivas from the genome mouse (C57BL/6 strain) and the genome rat (BN/SsNHsd/Mcwi strain). Our goal was to identify salivary proteins with one or more of three characteristics that may indicate that they have been involved in adaptation: 1) rapid expansion of their gene families; 2) footprints of positive selection; and/or 3) sex-limited expression. The results of our proteomics studies allow direct comparison of the proteins expressed and their levels between the sexes of the two rodent species. Twelve members of the Mus musculus species-specific kallikrein subfamily Klk1b showed sex-limited expression in the mouse saliva proteomes. By contrast, we did not find any of the Rattus norvegicus species-specific kallikrein subfamily Klk1c proteins in male or female genome rat, nor transcripts in their submandibular glands. On the other hand, we detected expression of this family as transcripts in the submandibular glands of both sexes of Sprague-Dawley rats. Using the CODEML program in the PAML package, we demonstrate that the two rodent kallikrein subfamilies have apparently evolved rapidly under the influence of positive selection that continually remodeled the amino acid sites on the same face in the members of the subfamilies. Thus, although their kallikrein subfamily expansions were independent, this evolutionary pattern has occurred in parallel in the two rodent species, suggesting a form of convergent evolution at the molecular level. On the basis of this new data, we suggest that the previous speculative function of the species-specific rodent kallikreins as important solely in wound healing in males be investigated further. In addition to or instead of that function, we propose that their sex-limited expression, coupled with their rapid evolution may be clues to an as-yet-undetermined interaction between the sexes

    Heterarchy of Transcription Factors Driving Basal and Luminal Cell Phenotypes in Human Urothelium

    Get PDF
    Cell differentiation is effected by complex networks of transcription factors that co-ordinate re-organisation of the chromatin landscape. The hierarchies of these relationships can be difficult to dissect. During in vitro differentiation of normal human uro-epithelial cells, formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) and RNA-seq were used to identify alterations in chromatin accessibility and gene expression changes following activation of the nuclear receptor PPARG as a differentiation-initiating event. Regions of chromatin identified by FAIRE-seq as having altered accessibility during differentiation were found to be enriched with sequence-specific binding motifs for transcription factors predicted to be involved in driving basal and differentiated urothelial cell phenotypes, including FOXA1, P63, GRHL2, CTCF and GATA3. In addition, co-occurrence of GATA3 motifs was observed within sub-sets of differentiation-specific peaks containing P63 or FOXA1 after induction of differentiation. Changes in abundance of GRHL2, GATA3, and P63 were observed in immunoblots of chromatin-enriched extracts. Transient siRNA knockdown of P63 revealed that P63 favoured a basal-like phenotype by inhibiting differentiation and promoting expression of basal marker genes. GATA3 siRNA prevented differentiation-associated downregulation of P63 protein and transcript, and demonstrated positive feedback of GATA3 on PPARG transcript, but showed no effect on FOXA1 transcript or protein expression. This approach indicates that as a transcriptionally-regulated programme, urothelial differentiation operates as a heterarchy wherein GATA3 is able to co-operate with FOXA1 to drive expression of luminal marker genes, but that P63 has potential to transrepress expression of the same genes
    corecore