81 research outputs found

    Inferring nonneutral evolution from contrasting patterns of polymorphisms and divergences in different protein coding regions of enterovirus 71 circulating in Taiwan during 1998-2003

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enterovirus (EV) 71 is one of the common causative agents for hand, foot, and, mouth disease (HFMD). In recent years, the virus caused several outbreaks with high numbers of deaths and severe neurological complications. Despite the importance of these epidemics, several aspects of the evolutionary and epidemiological dynamics, including viral nucleotide variations within and between different outbreaks, rates of change in immune-related structural regions vs. non-structural regions, and forces driving the evolution of EV71, are still not clear.</p> <p>Results</p> <p>We sequenced four genomic segments, i.e., the 5' untranslated region (UTR), VP1, 2A, and 3C, of 395 EV71 viral strains collected from 1998 to 2003 in Taiwan. The phylogenies derived from different genomic segments revealed different relationships, indicating frequent sequence recombinations as previously noted. In addition to simple recombinations, exchanges of the P1 domain between different species/genotypes of human enterovirus species (HEV)-A were repeatedly observed. Contrasting patterns of polymorphisms and divergences were found between structural (VP1) and non-structural segments (2A and 3C), i.e., the former was less polymorphic within an outbreak but more divergent between different HEV-A species than the latter two. Our computer simulation demonstrated a significant excess of amino acid replacements in the VP1 region implying its possible role in adaptive evolution. Between different epidemic seasons, we observed high viral diversity in the epidemic peaks followed by severe reductions in diversity. Viruses sampled in successive epidemic seasons were not sister to each other, indicating that the annual outbreaks of EV71 were due to genetically distinct lineages.</p> <p>Conclusions</p> <p>Based on observations of accelerated amino acid changes and frequent exchanges of the P1 domain, we propose that positive selection and subsequent frequent domain shuffling are two important mechanisms for generating new genotypes of HEV-A. Our viral dynamics analysis suggested that the importation of EV71 from surrounding areas likely contributes to local EV71 outbreaks.</p

    Rate of Evolution in Brain-Expressed Genes in Humans and Other Primates

    Get PDF
    Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM) and then conducted three-way comparisons among (i) mouse, OWM, and human, and (ii) OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse), a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal) in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i) faster evolution in gene expression, and (ii) a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed

    Molecular and Phylogenetic Analyses Suggest an Additional Hepatitis B Virus Genotype “I”

    Get PDF
    A novel hepatitis B virus (HBV) strain (W29) was isolated from serum samples in the northwest of China. Phylogenetic and distance analyses indicate that this strain is grouped with a series of distinct strains discovered in Vietnam and Laos that have been proposed to be a new genotype I. TreeOrderScan and GroupScan methods were used to study the intergenotype recombination of this special group. Recombination plots and tree maps of W29 and these putative genotype I strains exhibit distinct characteristics that are unexpected in typical genotype C strains of HBV. The amino acids of P gene, S gene, X gene, and C gene of all genotypes (including subtypes) were compared, and eight unique sites were found in genotype I. In vitro and in vivo experiments were also conducted to determine phenotypic characteristics between W29 and other representative strains of different genotypes obtained from China. Secretion of HBsAg in Huh7 cells is uniformly abundant among genotypes A, B, C, and I (W29), but not genotype D. HBeAg secretion is low in genotype I (W29), whose level is close to genotype A and much lower than genotypes B, C, and D. Results from the acute hydrodynamic injection mouse model also exhibit a similar pattern. From an overview of the results, the viral markers of W29 (I1) in Huh7 cells and mice had a more similar level to genotype A than genotype C, although the latter was closer to W29 in distance analysis. All evidence suggests that W29, together with other related strains found in Vietnam and Laos, should be classified into a new genotype

    The incidence of experimental smoking in school children: an 8-year follow-up of the child and adolescent behaviors in long-term evolution (CABLE) study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have established that most regular adult smokers become addicted in their adolescent years. We investigated the incidence of and risk factors associated with initial experimental smoking among a group of school children who were followed for 8 years.</p> <p>Methods</p> <p>We used cohort data collected as part of the Child and Adolescent Behaviors in Long-term Evolution (CABLE) study, which selected nine elementary schools each from an urban area (Taipei City) and a rural area (Hsingchu county) in northern Taiwan. From 2002 to 2008, children were asked annually whether they had smoked in the previous year. An accelerated lifetime model with Weibull distribution was used to examine the factors associated with experimental smoking.</p> <p>Results</p> <p>In 2001, 2686 4<sup>th</sup>-graders participated in the study. For each year from 2002 to 2008, their incidences of trial smoking were 3.1%, 4.0%, 2.8%, 6.0%, 5.3%, 5.0% and 6.0%, respectively. There was an increase from 7<sup>th </sup>to 8<sup>th </sup>grade (6.0%). Children who were males, lived in rural areas, came from single-parent families, had parents who smoked, and had peers who smoked were more likely to try smoking earlier. The influence of parents and peers on experimental smoking demonstrated gradient effects.</p> <p>Conclusions</p> <p>This study used a cohort to examine incidence and multiple influences, including individual factors, familial factors, and community factors, on experimental smoking in adolescents. The findings fit the social ecological model, highlighting the influences of family and friends. School and community attachment were associated with experimental smoking in teenagers.</p

    Structural diversity and functional implications of the eukaryotic TDP gene family

    No full text
    TDP-43 is an RNA-binding protein that functions in mammalian cells in transcriptional repression and exon skipping. The gene encoding TDP-43 (HGMW-approved gene symbol TARDBP) is conserved in human, mouse, Drosophila melanogaster, and Caenorhabditis elegans. Sequence comparison of the coding regions of the TDP genes among the four taxa reveals an extraordinarily low rate of sequence divergence, suggesting that the TDP genes carry out essential functions in these organisms. With DNA transfection assay, we have established the importance of the glycine-rich domain for the exon-skipping activity of TDP-43. Both human and mouse TDP genes belong to a gene family that also consists of a number of processed pseudogenes. Interestingly, combined database analysis and cDNA cloning have demonstrated that the primary transcript of the mammalian TDP genes undergoes alternative splicing to generate 11 mRNAs, including the one encoding TDP-43. Eight of the 11 splicing events involved the use of four each of the 5V-donor and 3V-acceptor sites, all of which reside within the last exon of the TDP-43 mRNA. The existence of multispliced isoforms of TDP-encoded proteins provides further support for the functional complexity of the eukaryotic TDP genes

    Phylogeny, Taxonomy, and Biogeography of the Oriental Pitvipers of the Genus Trimeresurus (Reptilia: Viperidae: Crotalinae): A Molecular Perspective

    Get PDF
    Based on sequence variation in 806 bp of the mitochondrial 12S rRNA gene, phylogenetic relationships were inferred for 14 species of Trimeresurus (sensu lato) including all East Asian members. Samples analyzed also included representatives of all assemblages of species that are frequently treated as separate genera except for T. mangshanensis, a type species of the recently described monotypic genus Ermia. Results support some previous accounts chiefly from morphological studies, such as distinct divergence of T. wagleri from the remainder, and monophyly of T. mucrosquamatus, T. flavoviridis, T. jerdonii, T. elegans and T. tokarensis. On the other hand, our results negated a putative close affinity of T. monticola and T. okinavensis, and indicated the sister relationship of the latter with T. gracilis. Phylogenetic relationships revealed in this study suggested that the genus Trimeresurus dispersed into the Ryukyu region at least three times, and that T. flavoviridis and T. tokarensis from the central Ryukyus constitute a relict clade

    Data from: Influence of gene flow on divergence dating – implications for speciation history of Takydromus grass lizards

    No full text
    Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analyzed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation-with-migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favored over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene- and species-based divergence dating. Due to their limited dispersal ability, it is suggested that geographic isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, the current study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus

    Molecular Characterization of Cryptically Circulating Rabies Virus from Ferret Badgers, Taiwan

    No full text
    After the last reported cases of rabies in a human in 1959 and a nonhuman animal in 1961, Taiwan was considered free from rabies. However, during 2012–2013, an outbreak occurred among ferret badgers in Taiwan. To examine the origin of this virus strain, we sequenced 3 complete genomes and acquired multiple rabies virus (RABV) nucleoprotein and glycoprotein sequences. Phylogeographic analyses demonstrated that the RABV affecting the Taiwan ferret badgers (RABV-TWFB) is a distinct lineage within the group of lineages from Asia and that it has been differentiated from its closest lineages, China I (including isolates from Chinese ferret badgers) and the Philippines, 158–210 years ago. The most recent common ancestor of RABV-TWFB originated 91–113 years ago. Our findings indicate that RABV could be cryptically circulating in the environment. An understanding of the underlying mechanism might shed light on the complex interaction between RABV and its host
    corecore