9,034 research outputs found

    The application of digital computers to near-real-time processing of flutter test data

    Get PDF
    Procedures used in monitoring, analyzing, and displaying flight and ground flutter test data are presented. These procedures include three digital computer programs developed to process structural response data in near real time. Qualitative and quantitative modal stability data are derived from time history response data resulting from rapid sinusoidal frequency sweep forcing functions, tuned-mode quick stops, and pilot induced control pulses. The techniques have been applied to both fixed and rotary wing aircraft, during flight, whirl tower rotor systems tests, and wind tunnel flutter model tests. An hydraulically driven oscillatory aerodynamic vane excitation system utilized during the flight flutter test programs accomplished during Lockheed L-1011 and S-3A development is described

    A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    Get PDF
    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor

    The Ulysses Supplement to the BATSE 3B Catalog of Cosmic Gamma-Ray Bursts

    Get PDF
    We present Interplanetary Network localization information for 218 gamma-ray bursts in the 3rd BATSE catalog, obtained by analyzing the arrival times of these bursts at the Ulysses and Compton Gamma-Ray Observatory (CGRO) spacecraft. For any given burst observed by these two spacecraft, arrival time analysis (or "triangulation") results in an annulus of possible arrival directions whose half-width varies between 7 arcseconds and 32 arcminutes, depending on the intensity and time history of the burst, and the distance of the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the error box area of a factor of 30.Comment: Accepted for publication in the Astrophysical Journal Supplemen

    The Formation of a Bound Star Cluster: From the Orion Nebula Cluster to the Pleiades

    Get PDF
    (shortened) Direct N-body calculations are presented of the formation of Galactic clusters using GasEx, which is a variant of the code Nbody6. The calculations focus on the possible evolution of the Orion Nebula Cluster (ONC) by assuming that the embedded OB stars explosively drove out 2/3 of its mass in the form of gas about 0.4 Myr ago. A bound cluster forms readily and survives for 150 Myr despite additional mass loss from the large number of massive stars, and the Galactic tidal field. This is the very first time that cluster formation is obtained under such realistic conditions. The cluster contains about 1/3 of the initial 10^4 stars, and resembles the Pleiades Cluster to a remarkable degree, implying that an ONC-like cluster may have been a precursor of the Pleiades. This scenario predicts the present expansion velocity of the ONC, which will be measurable by upcoming astrometric space missions (DIVA and GAIA). These missions should also detect the original Pleiades members as an associated expanding young Galactic-field sub-population. The results arrived at here suggest that Galactic clusters form as the nuclei of expanding OB associations.Comment: MNRAS, in press, 36 pages, 15 figures; repl.vers. contains adjustments for consistency with published versio

    RF multicoupler design techniques to minimize problems of corona, multipaction, and stability

    Get PDF
    A mathematical expression was derived describing multipacting and corona effects in a coaxial cavity. Both mechanical and electrical design techniques were investigated to minimize the susceptibility of coaxial cavity to corona and multipacting-type breakdown. To assist in the design of a multicoupler free from corona and multipactor breakdown, a flow chart obtained from the derived mathematical expression is included

    The Interplanetary Network Supplement to the BeppoSAX Gamma-Ray Burst Catalogs

    Get PDF
    Between 1996 July and 2002 April, one or more spacecraft of the interplanetary network detected 787 cosmic gamma-ray bursts that were also detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera experiments aboard the BeppoSAX spacecraft. During this period, the network consisted of up to six spacecraft, and using triangulation, the localizations of 475 bursts were obtained. We present the localization data for these events.Comment: 89 pages, 3 figures. Submitted to the Astrophysical Journal Supplement Serie

    Force field feature extraction for ear biometrics

    No full text
    The overall objective in defining feature space is to reduce the dimensionality of the original pattern space, whilst maintaining discriminatory power for classification. To meet this objective in the context of ear biometrics a new force field transformation treats the image as an array of mutually attracting particles that act as the source of a Gaussian force field. Underlying the force field there is a scalar potential energy field, which in the case of an ear takes the form of a smooth surface that resembles a small mountain with a number of peaks joined by ridges. The peaks correspond to potential energy wells and to extend the analogy the ridges correspond to potential energy channels. Since the transform also turns out to be invertible, and since the surface is otherwise smooth, information theory suggests that much of the information is transferred to these features, thus confirming their efficacy. We previously described how field line feature extraction, using an algorithm similar to gradient descent, exploits the directional properties of the force field to automatically locate these channels and wells, which then form the basis of characteristic ear features. We now show how an analysis of the mechanism of this algorithmic approach leads to a closed analytical description based on the divergence of force direction, which reveals that channels and wells are really manifestations of the same phenomenon. We further show that this new operator, with its own distinct advantages, has a striking similarity to the Marr-Hildreth operator, but with the important difference that it is non-linear. As well as addressing faster implementation, invertibility, and brightness sensitivity, the technique is also validated by performing recognition on a database of ears selected from the XM2VTS face database, and by comparing the results with the more established technique of Principal Components Analysis. This confirms not only that ears do indeed appear to have potential as a biometric, but also that the new approach is well suited to their description, being robust especially in the presence of noise, and having the advantage that the ear does not need to be explicitly extracted from the background

    The distances of short-hard GRBs and the SGR connection

    Full text link
    We present a search for nearby (D<100 Mpc) galaxies in the error boxes of six well-localized short-hard gamma-ray bursts (GRBs). None of the six error boxes reveals the presence of a plausible nearby host galaxy. This allows us to set lower limits on the distances and, hence, the isotropic-equivalent energy of these GRBs. Our lower limits are around 1×10491 \times 10^{49} erg (at 2σ2\sigma confidence level); as a consequence, some of the short-hard GRBs we examine would have been detected by BATSE out to distances greater than 1 Gpc and therefore constitute a bona fide cosmological population. Our search is partially motivated by the December 27, 2004 hypergiant flare from SGR 1806-20, and the intriguing possibility that short-hard GRBs are extragalactic events of a similar nature. Such events would be detectable with BATSE to a distance of \~50 Mpc, and their detection rate should be comparable to the actual BATSE detection rate of short-hard GRBs. The failure of our search, by contrast, suggests that such flares constitute less than 15% of the short-hard GRBs (<40% at 95% confidence). We discuss possible resolutions of this discrepancy.Comment: Enlarged sample of bursts; ApJ in pres

    The Ulysses Supplement to the BATSE 4Br Catalog of Cosmic Gamma-Ray Bursts

    Get PDF
    We present Interplanetary Network localization information for 147 gamma-ray bursts observed by the Burst and Transient Source Experiment between the end of the 3rd BATSE catalog and the end of the 4th BATSE catalog, obtained by analyzing the arrival times of these bursts at the Ulysses and Compton Gamma-Ray Observatory (CGRO) spacecraft. For any given burst observed by these two spacecraft, arrival time analysis (or "triangulation") results in an annulus of possible arrival directions whose half-width varies between 7 arcseconds and 2.3 degrees, depending on the intensity and time history of the burst, and the distance of the Ulysses spacecraft from Earth. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the error box area of a factor of 25.Comment: Accepted for publication in the Astrophysical Journal Supplemen

    Eclipsing binary statistics - theory and observation

    Full text link
    The expected distributions of eclipse-depth versus period for eclipsing binaries of different luminosities are derived from large-scale population synthesis experiments. Using the rapid Hurley et al. BSE binary evolution code, we have evolved several hundred million binaries, starting from various simple input distributions of masses and orbit-sizes. Eclipse probabilities and predicted distributions over period and eclipse-depth (P/dm) are given in a number of main-sequence intervals, from O-stars to brown dwarfs. The comparison between theory and Hipparcos observations shows that a standard (Duquennoy & Mayor) input distribution of orbit-sizes (a) gives reasonable numbers and P/dm-distributions, as long as the mass-ratio distribution is also close to the observed flat ones. A random pairing model, where the primary and secondary are drawn independently from the same IMF, gives more than an order of magnitude too few eclipsing binaries on the upper main sequence. For a set of eclipsing OB-systems in the LMC, the observed period-distribution is different from the theoretical one, and the input orbit distributions and/or the evolutionary environment in LMC has to be different compared with the Galaxy. A natural application of these methods are estimates of the numbers and properties of eclipsing binaries observed by large-scale surveys like Gaia.Comment: 11 pages, 16 figures, accepted for publication in A&
    corecore