223 research outputs found

    t(8;16)(p11;p13)

    Get PDF
    Review on t(8;16)(p11;p13), with data on clinics, and the genes involved

    t(11;15)(q23;q14)

    Get PDF
    Review on t(11;15)(q23;q14), with data on clinics, and the genes involved

    Bladder: Squamous cell carcinoma

    Get PDF
    Review on Bladder: Squamous cell carcinoma, with data on clinics, and the genes involved

    t(8;16)(p11;p13)

    Get PDF
    Review on t(8;16)(p11;p13), with data on clinics, and the genes involved

    Dispersal Modeling of Fish Early Life Stages: Sensitivity with Application to Atlantic Cod in the Western Gulf of Maine

    Get PDF
    As an initial step in establishing mechanistic relationships between environmental variability and recruitment in Atlantic cod Gadhus morhua along the coast of the western Gulf of Maine, we assessed transport success of larvae from major spawning grounds to nursery areas with particle tracking using the unstructured grid model FVCOM (finite volume coastal ocean model). In coastal areas, dispersal of early planktonic life stages of fish and invertebrate species is highly dependent on the regional dynamics and its variability, which has to be captured by our models. With state-of-the-art forcing for the year 1995, we evaluate the sensitivity of particle dispersal to the timing and location of spawning, the spatial and temporal resolution of the model, and the vertical mixing scheme. A 3 d frequency for the release of particles is necessary to capture the effect of the circulation variability into an averaged dispersal pattern of the spawning season. The analysis of sensitivity to model setup showed that a higher resolution mesh, tidal forcing, and current variability do not change the general pattern of connectivity, but do tend to increase within-site retention. Our results indicate strong downstream connectivity among spawning grounds and higher chances for successful transport from spawning areas closer to the coast. The model run for January egg release indicates 1 to 19 % within-spawning ground retention of initial particles, which may be sufficient to sustain local populations. A systematic sensitivity analysis still needs to be conducted to determine the minimum mesh and forcing resolution that adequately resolves the complex dynamics of the western Gulf of Maine. Other sources of variability, i.e. large-scale upstream forcing and the biological environment, also need to be considered in future studies of the interannual variability in transport and survival of the early life stages of cod

    INTRUSION OF RECENT AIR IN POLAR STRATOSPHERE DURING SUMMER 2009 REVEALED BY BALLOON-BORNE IN SITU CO MEASUREMENTS

    Get PDF
    International audienceThe SPIRALE (Spectroscopie Infa-Rouge par Absorption de Lasers Embarqués) balloon-borne instrument has been launched twice within 17 days in the polar region (Kiruna, Sweden, 67.9°N-21.1°E) during summer, at the beginning and at the end of August 2009. In situ measurements of several trace gases have been performed including CO and O 3 between 10 and 34 km height, with very high vertical resolution (~5 m). The both flight results are compared and the CO stratospheric profile of the first flight presents specific structures associated with mid-latitude intrusion in the lowest stratospheric levels. Their interpretation is made with the help of results from several modeling tools (MIMOSA and FLEXTRA) and available satellite data (IASI). We also used the O 3 profile correlated with CO to calculate the proportion of recent air in the polar stratosphere. The results indicate the impact of East Asia urban pollution on the chemistry of polar stratosphere in summer

    Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) 2 inferred from clay mineralogy and stable isotope (C-O) geochemistry (NW Europe)

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Available online 17 January 2017The Early Jurassic was broadly a greenhouse climate period that was punctuated by short warm and cold climatic events, positive and negative excursions of carbon isotopes, and episodes of enhanced organic matter burial. Clay minerals from Pliensbachian sediments recovered from two boreholes in the Paris Basin, are used here as proxies of detrital supplies, runoff conditions, and palaeoceanographic changes. The combined use of these minerals with ACCEPTED MANUSCRIPT ACCEPTED MANUSCRIPT stable isotope data (C-O) from bulk carbonates and organic matter allows palaeoclimatic reconstructions to be refined for the Pliensbachian. Kaolinite/illite ratio is discussed as a reliable proxy of the hydrological cycle and runoff from landmasses. Three periods of enhanced runoff are recognised within the Pliensbachian. The first one at the SinemurianPliensbachian transition shows a significant increase of kaolinite concomitant with the negative carbon isotope excursion at the so-called Sinemurian Pliensbachian Boundary Event (SPBE). The Early/Late Pliensbachian transition was also characterised by more humid conditions. This warm interval is associated with a major change in oceanic circulation during the Davoei Zone, likely triggered by sea-level rise; the newly created palaeogeography, notably the flooding of the London-Brabant Massif, allowed boreal detrital supplies, including kaolinite and chlorite, to be exported to the Paris Basin. The last event of enhanced runoff occurred during the late Pliensbachian (Subdonosus Subzone of the Margaritatus Zone), which occurred also during a warm period, favouring organic matter production and preservation. Our study highlights the major role of the London Brabant Massif in influencing oceanic circulation of the NW European area, as a topographic barrier (emerged lands) during periods of lowstand sea-level and its flooding during period of high sea-level. This massif was the unique source of smectite in the Paris Basin. Two episodes of smectite-rich sedimentation (‘smectite events’), coincide with regressive intervals, indicating emersion of the London Brabant Massif and thus suggesting that an amplitude of sea-level change high enough to be linked to glacio-eustasy. This mechanism is consistent with sedimentological and geochemical evidences of continental ice growth notably during the Latest Pliensbachian (Spinatum Zone), and possibly during the Early Pliensbachian (late Jamesoni/early Ibex Zones).The study was supported by the “Agence Nationale pour la Gestion des Déchets Radioactifs” (Andra––French National Radioactive Waste Management Agency)

    Validation and data characteristics of methane and nitrous oxide profiles observed by MIPAS and processed with Version 4.61 algorithm

    Get PDF
    The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements

    Validation of MIPAS-ENVISAT NO2 operational data

    Get PDF
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument was launched aboard the environmental satellite ENVISAT into its sun-synchronous orbit on 1 March 2002. The short-lived species NO<sub>2</sub> is one of the key target products of MIPAS that are operationally retrieved from limb emission spectra measured in the stratosphere and mesosphere. Within the MIPAS validation activities, a large number of independent observations from balloons, satellites and ground-based stations have been compared to European Space Agency (ESA) version 4.61 operational NO<sub>2</sub> data comprising the time period from July 2002 until March 2004 where MIPAS measured with full spectral resolution. Comparisons between MIPAS and balloon-borne observations carried out in 2002 and 2003 in the Arctic, at mid-latitudes, and in the tropics show a very good agreement below 40 km altitude with a mean deviation of roughly 3%, virtually without any significant bias. The comparison to ACE satellite observations exhibits only a small negative bias of MIPAS which appears not to be significant. The independent satellite instruments HALOE, SAGE II, and POAM III confirm in common for the spring-summer time period a negative bias of MIPAS in the Arctic and a positive bias in the Antarctic middle and upper stratosphere exceeding frequently the combined systematic error limits. In contrast to the ESA operational processor, the IMK/IAA retrieval code allows accurate inference of NO<sub>2</sub> volume mixing ratios under consideration of all important non-LTE processes. Large differences between both retrieval results appear especially at higher altitudes, above about 50 to 55 km. These differences might be explained at least partly by non-LTE under polar winter conditions but not at mid-latitudes. Below this altitude region mean differences between both processors remain within 5% (during night) and up to 10% (during day) under undisturbed (September 2002) conditions and up to 40% under perturbed polar night conditions (February and March 2004). The intercomparison of ground-based NDACC observations shows no significant bias between the FTIR measurements in Kiruna (68&deg; N) and MIPAS in summer 2003 but larger deviations in autumn and winter. The mean deviation over the whole comparison period remains within 10%. A mean negative bias of 15% for MIPAS daytime and 8% for nighttime observations has been determined for UV-vis comparisons over Harestua (60&deg; N). Results of a pole-to-pole comparison of ground-based DOAS/UV-visible sunrise and MIPAS mid-morning column data has shown that the mean agreement in 2003 falls within the accuracy limit of the comparison method. Altogether, it can be indicated that MIPAS NO<sub>2</sub> profiles yield valuable information on the vertical distribution of NO<sub>2</sub> in the lower and middle stratosphere (below about 45 km) during day and night with an overall accuracy of about 10&ndash;20% and a precision of typically 5&ndash;15% such that the data are useful for scientific studies. In cases where extremely high NO<sub>2</sub> occurs in the mesosphere (polar winter) retrieval results in the lower and middle stratosphere are less accurate than under undisturbed atmospheric conditions
    corecore