1,619 research outputs found

    Superconducting d-wave junctions: The disappearance of the odd ac components

    Full text link
    We study voltage-biased superconducting planar d-wave junctions for arbitrary transmission and arbitrary orientation of the order parameters of the superconductors. For a certain orientation of the superconductors the odd ac components disappear, resulting in a doubling of the Josephson frequency. We study the sensitivity of this disappearance to orientation and compare with experiments on grain boundary junctions. We also discuss the possibility of a current flow parallel to the junction.Comment: 5 pages, 3 figure

    System for the measurement of ultra-low stray light levels

    Get PDF
    An apparatus is described for measuring the effectiveness of stray light suppression light shields and baffle arrangements used in optical space experiments and large space telescopes. The light shield and baffle arrangement and a telescope model are contained in a vacuum chamber. A source of short, high-powered light energy illuminates portions of the light shield and baffle arrangement and reflects a portion of same to a photomultiplier tube by virtue of multipath scattering. The resulting signal is transferred to time-channel electronics timed by the firing of the high energy light source allowing time discrimination of the signal thereby enabling the light scattered and suppressed by the model to be distinguished from the walls and holders around the apparatus

    Anomalous Hall effect in Rashba two-dimensional electron systems based on narrow-band semiconductors: side-jump and skew scattering mechanisms

    Full text link
    We employ a helicity-basis kinetic equation approach to investigate the anomalous Hall effect in two-dimensional narrow-band semiconductors considering both Rashba and extrinsic spin-orbit (SO) couplings, as well as a SO coupling directly induced by an external driving electric field. Taking account of long-range electron-impurity scattering up to the second Born approximation, we find that the various components of the anomalous Hall current fit into two classes: (a) side-jump and (b) skew scattering anomalous Hall currents. The side-jump anomalous Hall current involves contributions not only from the extrinsic SO coupling but also from the SO coupling due to the driving electric field. It also contains a component which arises from the Rashba SO coupling and relates to the off-diagonal elements of the helicity-basis distribution function. The skew scattering anomalous Hall effect arises from the anisotropy of the diagonal elements of the distribution function and it is a result of both the Rashba and extrinsic SO interactions. Further, we perform a numerical calculation to study the anomalous Hall effect in a typical InSb/AlInSb quantum well. The dependencies of the side-jump and skew scattering anomalous Hall conductivities on magnetization and on the Rashba SO coupling constant are examined.Comment: 16 pages, 4 figures, accepted for publication in PR

    Magnetoresistance Anomalies in (Ga,Mn)As Epilayers with Perpendicular Magnetic Anisotropy

    Full text link
    We report the observation of anomalies in the longitudinal magnetoresistance of tensile-strained (Ga,Mn)As epilayers with perpendicular magnetic anisotropy. Magnetoresistance measurements carried out in the planar geometry (magnetic field parallel to the current density) reveal "spikes" that are antisymmetric with respect to the direction of the magnetic field. These anomalies always occur during magnetization reversal, as indicated by a simultaneous change in sign of the anomalous Hall effect. The data suggest that the antisymmetric anomalies originate in anomalous Hall effect contributions to the longitudinal resistance when domain walls are located between the voltage probes. This interpretation is reinforced by carrying out angular sweeps of H\vec{H}, revealing an antisymmetric dependence on the helicity of the field sweep.Comment: Submitted to Phys. Rev.

    Hall Effect of La2/3(Ca,Pb)1/3MnO3 Single Crystals near the Critical Temperature

    Full text link
    The Hall resistivity rho_{xy} of a La_{2/3}(Ca,Pb)_{1/3}MnO_3 single crystal has been measured as a function of temperature and field. The overall behavior is similar to that observed previously in thin-films. At 5 K, rho_{xy} is positive and linear in field, indicating that the anomalous contribution RSR_S is negligible. However, the effective carrier density in a free electron model is n_{eff}=2.4 holes/Mn, even larger than the 0.85-1.9 holes/Mn reported for thin-films and far larger than the 0.33 holes/Mn expected from the doping level. As temperature increases, a strong, negative contribution to rho_{xy} appears, that we ascribe to R_S. Using detailed magnetization data, we separate the ordinary (\propto B) and anomalous (\propto M) contributions. Below T_C, R_S \propto rho_{xx}, indicating that magnetic skew scattering is the dominant mechanism in the metallic ferromagnetic regime. At and above the resistivity-peak temperature, we find that rho_{xy}/rho_{xx}M is a constant, independent of temperature and field. This implies that the anomalous Hall coefficient is proportional to the magnetoresistance. A different explanation based on two fluid model is also presented.Comment: revtex, 11 pages, 4 figure

    Thermal Casimir Force between Magnetic Materials

    Full text link
    We investigate the Casimir pressure between two parallel plates made of magnetic materials at nonzero temperature. It is shown that for real magnetodielectric materials only the magnetic properties of ferromagnets can influence the Casimir pressure. This influence is accomplished through the contribution of the zero-frequency term of the Lifshitz formula. The possibility of the Casimir repulsion through the vacuum gap is analyzed depending on the model used for the description of the dielectric properties of the metal plates.Comment: 9 pages, 3 figures. Contribution to the Proceedings of QFEXT09, Norman, OK, September 21-25, 200

    Breakdown of the lattice polaron picture in La0.7Ca0.3MnO3 single crystals

    Full text link
    When heated through the magnetic transition at Tc, La0.7Ca0.3MnO3 changes from a band metal to a polaronic insulator. The Hall constant R_H, through its activated behavior and sign anomaly, provides key evidence for polaronic behavior. We use R_H and the Hall mobility to demonstrate the breakdown of the polaron phase. Above 1.4Tc, the polaron picture holds in detail, while below, the activation energies of both R_H and the mobility deviate strongly from their polaronic values. These changes reflect the presence of metallic, ferromagnetic fluctuations, in the volume of which the Hall effect develops additional contributions tied to quantal phases.Comment: 11 pages, 3 figures, final version to appear in Phys. Rev. B Rapi

    Unusual behaviors in the transport properties of REFe4_{4}P12_{12} (RE: La, Ce, Pr, and Nd)

    Full text link
    We have investigated the resistivity (ρ\rho), thermoelectric power (TEP) and Hall coefficient (RHR_{H}) on high quality single crystals of REFe4_{4}P12_{12}. TEP in CeFe4_{4}P12_{12} is extremely large (\sim 0.5mV/K at 290K) with a peak of \sim 0.75mV/K at around 65K. The Hall mobility also shows a peak at \sim 65K, suggesting carriers with heavy masses developed at lower temperatures related with the f-hybridized band. Both Pr- and Nd- systems exhibit an apparent increase of ρ\rho with decreasing temperature far above their magnetic transition temperatures. In the same temperature ranges, TEP exhibits unusually large absolute values of -50μ\muV/K for PrFe4_{4}P12_{12} and -15μ\muV/K for NdFe4_{4}P12_{12}, respectively. For PrFe4_{4}P12_{12}, such anomalous transport properties suggest an unusual ground state, possibly related with the Quadrupolar Kondo effect.Comment: 5 pages, 8 figure

    Anomalous f-electron Hall Effect in the Heavy-Fermion System CeTIn5_{5} (T = Co, Ir, or Rh)

    Full text link
    The in-plane Hall coefficient RH(T)R_{H}(T) of CeRhIn5_{5}, CeIrIn5_{5}, and CeCoIn5_{5} and their respective non-magnetic lanthanum analogs are reported in fields to 90 kOe and at temperatures from 2 K to 325 K. RH(T)R_{H}(T) is negative, field-independent, and dominated by skew-scattering above \sim 50 K in the Ce compounds. RH(H0)R_{H}(H \to 0) becomes increasingly negative below 50 K and varies with temperature in a manner that is inconsistent with skew scattering. Field-dependent measurements show that the low-T anomaly is strongly suppressed when the applied field is increased to 90 kOe. Measurements on LaRhIn5_{5}, LaIrIn5_{5}, and LaCoIn5_{5} indicate that the same anomalous temperature dependence is present in the Hall coefficient of these non-magnetic analogs, albeit with a reduced amplitude and no field dependence. Hall angle (θH\theta_{H}) measurements find that the ratio ρxx/ρxy=cot(θH)\rho_{xx}/\rho_{xy}=\cot(\theta_{H}) varies as T2T^{2} below 20 K for all three Ce-115 compounds. The Hall angle of the La-115 compounds follow this T-dependence as well. These data suggest that the electronic-structure contribution dominates the Hall effect in the 115 compounds, with ff-electron and Kondo interactions acting to magnify the influence of the underlying complex band structure. This is in stark contrast to the situation in most 4f4f and 5f5f heavy-fermion compounds where the normal carrier contribution to the Hall effect provides only a small, T-independent background to RH.R_{H}.Comment: 23 pages and 8 figure

    The play's the thing

    Get PDF
    For very understandable reasons phenomenological approaches predominate in the field of sensory urbanism. This paper does not seek to add to that particular discourse. Rather it takes Rorty’s postmodernized Pragmatism as its starting point and develops a position on the role of multi-modal design representation in the design process as a means of admitting many voices and managing multidisciplinary collaboration. This paper will interrogate some of the concepts underpinning the Sensory Urbanism project to help define the scope of interest in multi-modal representations. It will then explore a range of techniques and approaches developed by artists and designers during the past fifty years or so and comment on how they might inform the question of multi-modal representation. In conclusion I will argue that we should develop a heterogeneous tool kit that adopts, adapts and re-invents existing methods because this will better serve our purposes during the exploratory phase(s) of any design project that deals with complexity
    corecore