2,320 research outputs found

    Superconducting d-wave junctions: The disappearance of the odd ac components

    Full text link
    We study voltage-biased superconducting planar d-wave junctions for arbitrary transmission and arbitrary orientation of the order parameters of the superconductors. For a certain orientation of the superconductors the odd ac components disappear, resulting in a doubling of the Josephson frequency. We study the sensitivity of this disappearance to orientation and compare with experiments on grain boundary junctions. We also discuss the possibility of a current flow parallel to the junction.Comment: 5 pages, 3 figure

    Analytical and experimental study of stratification and liquid-ullage coupling, 1 June 1964 - 31 May 1965

    Get PDF
    Closed-form solution for stratification of subcooled fluids in containers subjected to heating, and for liquid-ullage vapor couplin

    Towards a better understanding of the dynamic role of the distance language learner: learner perceptions of personality, motivation, roles, and approaches

    Get PDF
    This study investigated the experience of learners enrolled on an Open University (UK) French course, and included personality factors, motivation, and tutor and student roles. The data gathered via multiple elicitation methods gave useful insights into issues of special relevance to distance language education, in particular the lack of fit between an inherently social discipline such as language learning and the distance context, whose main characterizing feature is remoteness from others. Motivation was seen to play a crucial role in success, along with tutor feedback, and personal responsibility for learning. Increased confidence and self?regulation were beneficial outcomes of the process of learning at a distance, and numerous suggestions for learning approaches based on personal experience were offered for language learners new to distance learning. The study concluded that the task for distance practitioners is to build on the insights shown by learners themselves, in order to target support where it is most needed

    A rigorous real time Feynman Path Integral and Propagator

    Full text link
    We will derive a rigorous real time propagator for the Non-relativistic Quantum Mechanic L2L^2 transition probability amplitude and for the Non-relativistic wave function. The propagator will be explicitly given in terms of the time evolution operator. The derivation will be for all self-adjoint nonvector potential Hamiltonians. For systems with potential that carries at most a finite number of singularity and discontinuities, we will show that our propagator can be written in the form of a rigorous real time, time sliced Feynman path integral via improper Riemann integrals. We will also derive the Feynman path integral in Nonstandard Analysis Formulation. Finally, we will compute the propagator for the harmonic oscillator using the Nonstandard Analysis Feynman path integral formuluation; we will compute the propagator without using any knowledge of classical properties of the harmonic oscillator

    Universal Magnetic-Field-Driven Metal-Insulator-Metal Transformations in Graphite and Bismuth

    Get PDF
    Applied magnetic field induces metal - insulator and re-entrant insulator-metal transitions in both graphite and rhombohedral bismuth. The corresponding transition boundaries plotted on the magnetic field - temperature (B - T) plane nearly coincide for these semimetals and can be best described by power laws T ~ (B - B_c)^k, where B_c is a critical field at T = 0 and k = 0.45 +/- 0.05. We show that insulator-metal-insulator (I-M-I) transformations take place in the Landau level quantization regime and illustrate how the IMT in quasi-3D graphite transforms into a cascade of I-M-I transitions, related to the quantum Hall effect in quasi-2D graphite samples. We discuss the possible coupling of superconducting and excitonic correlations with the observed phenomena, as well as the signatures of quantum phase transitions associated with the M-I and I-M transformations.Comment: 23 pages including 14 figure

    Nano granular metallic Fe - oxygen deficient TiO2−ή_{2-\delta} composite films: A room temperature, highly carrier polarized magnetic semiconductor

    Full text link
    Nano granular metallic iron (Fe) and titanium dioxide (TiO2−ή_{2-\delta}) were co-deposited on (100) lanthanum aluminate (LaAlO3_3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. The co-deposition of Fe and TiO2_2 resulted in ≈\approx 10 nm metallic Fe spherical grains suspended within a TiO2−ή_{2-\delta} matrix. The films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss at room temperature. Our estimate of the saturation magnetization based on the size and distribution of the Fe spheres agreed well with the measured value. The film composite structure was characterized as p-type magnetic semiconductor at 300 K with a carrier density of the order of 1022/cm3 10^{22} /{\rm cm^3}. The hole carriers were excited at the interface between the nano granular Fe and TiO2−ή_{2-\delta} matrix similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. From the large anomalous Hall effect directly observed in these films it follows that the holes at the interface were strongly spin polarized. Structure and magneto transport properties suggested that these PLD films have potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure

    Interplay between carrier and impurity concentrations in annealed Ga1−x_{1-x}Mnx_{x}As intrinsic anomalous Hall Effect

    Get PDF
    Investigating the scaling behavior of annealed Ga1−x_{1-x}Mnx_{x}As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and extrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in TC_{C}. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.Comment: 4 pages, 5 figure

    Spin susceptibilities, spin densities and their connection to spin-currents

    Get PDF
    We calculate the frequency dependent spin susceptibilities for a two-dimensional electron gas with both Rashba and Dresselhaus spin-orbit interaction. The resonances of the susceptibilities depends on the relative values of the Rashba and Dresselhaus spin-orbit constants, which could be manipulated by gate voltages. We derive exact continuity equations, with source terms, for the spin density and use those to connect the spin current to the spin density. In the free electron model the susceptibilities play a central role in the spin dynamics since both the spin density and the spin current are proportional to them.Comment: 6 pages, revtex4 styl

    Anomalous Hall effect in Rashba two-dimensional electron systems based on narrow-band semiconductors: side-jump and skew scattering mechanisms

    Full text link
    We employ a helicity-basis kinetic equation approach to investigate the anomalous Hall effect in two-dimensional narrow-band semiconductors considering both Rashba and extrinsic spin-orbit (SO) couplings, as well as a SO coupling directly induced by an external driving electric field. Taking account of long-range electron-impurity scattering up to the second Born approximation, we find that the various components of the anomalous Hall current fit into two classes: (a) side-jump and (b) skew scattering anomalous Hall currents. The side-jump anomalous Hall current involves contributions not only from the extrinsic SO coupling but also from the SO coupling due to the driving electric field. It also contains a component which arises from the Rashba SO coupling and relates to the off-diagonal elements of the helicity-basis distribution function. The skew scattering anomalous Hall effect arises from the anisotropy of the diagonal elements of the distribution function and it is a result of both the Rashba and extrinsic SO interactions. Further, we perform a numerical calculation to study the anomalous Hall effect in a typical InSb/AlInSb quantum well. The dependencies of the side-jump and skew scattering anomalous Hall conductivities on magnetization and on the Rashba SO coupling constant are examined.Comment: 16 pages, 4 figures, accepted for publication in PR

    ac Josephson effect in superconducting d-wave junctions

    Full text link
    We study theoretically the ac Josephson effect in superconducting planar d-wave junctions. The insulating barrier assumed to be present between the two superconductors may have arbitrary strength. Many properties of this system depend on the orientation of the d-wave superconductor: we calculate the ac components of the Josephson current. In some arrangements there is substantial negative differential conductance due to the presence of mid-gap states. We study how robust these features are to finite temperature and also comment on how the calculated current-voltage curves compare with experiments. For some other configurations (for small barrier strength) we find zero-bias conductance peaks due to multiple Andreev reflections through midgap states. Moreover, the odd ac components are strongly suppressed and even absent in some arrangements. This absence will lead to a doubling of the Josephson frequency. All these features are due to the d-wave order parameter changing sign when rotated 90∘90^{\circ}. Recently, there have been several theoretical reports on parallel current in the d-wave case for both the stationary Josephson junction and for the normal metal-superconductor junction. Also in our case there may appear current density parallel to the junction, and we present a few examples when this takes place. Finally, we give a fairly complete account of the method used and also discuss how numerical calculations should be performed in order to produce current-voltage curves
    • 

    corecore