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We calculate the frequency-dependent spin susceptibilities for a two-dimensional electron gas with both
Rashba and Dresselhaus spin-orbit interactions. The resonances of the susceptibilities depend on the relative
values of the Rashba and Dresselhaus spin-orbit constants, which could be manipulated by gate voltages. We
derive exact continuity equations, with source terms, for the spin density and use those to connect the spin
current to the spin density. In the free electron model the susceptibilities play a central role in the spin
dynamics since both the spin density and the spin current are proportional to them.
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I. INTRODUCTION

The ability to manipulate spin states in semiconducting
and metallic nanostructures is now the focus of much experi-
mental and theoretical attention. Some spintronics applica-
tion are already in use1,2 and more have been proposed, rang-
ing from spin field-effect transistors3–5 to spin qubits.6,7 In
many cases the spin-orbit interaction can be used to manipu-
late the electron spin via electronic means.8 This sort of elec-
tronic manipulation is important since technologically, elec-
tric field control of spins is preferred over magnetic field
control. Also, electronic control of spins has revealed many
interesting physics in experiments involving semiconductor
heterostructures.9,10

Some time ago it was proposed that electric fields could
lead to magnetization in antiferromagnetic materials fulfill-
ing certain symmetries.11 This is the so-called magnetoelec-
tric effect. The magnetoelectric effect was considered for
conductors with special symmetry properties12 and for pyro-
electric superconductors.13 Electric-field-induced spin orien-
tation in semiconductors due to linear in momentum spin-
orbit interaction was also discussed in Refs. 14–16. There
has been renewed interest in this subject since this induced
spin polarization might serve as spin injectors in certain
semiconductor heterostructures.17,18Only recently there have
been experiments which seem to demonstrate such current
induced polarization of spins via spin-orbit interaction.19,20

A somewhat related effect is the so-called spin-Hall ef-
fect. In the normal Hall effect the electrons are deflected by
the Lorentz force, but in the spin-Hall effect spins are scat-
tered by impurities preferentially to the leftsrightd if their
spins point “up”s“down”d due to spin-orbit interaction.21,22

This will result in a spin current, but no net charge current,
flowing perpendicular to the applied charge current. Such an
extrinsic transverse spin current was already investigated by
Dyakononov and Perel some time ago in Ref. 23 and more
recently by Hirsch.24 Presently there is much interest in spin-
orbit mediated spin-Hall effect in semiconducting hetero-
structures. Here the effect can appear in hole-25–31 or
electron-doped32–42 semiconductors due to band structure
properties and impurities are not necessary. Thus, the term
intrinsic spin Hall effect is used to distinguish this from the
previously discussed mechanism since it occurs already in
the absence of impurities.26,32 Due to differences in the band

structure of the holes and electron there is an important dis-
tinction between the two since in the electron system the spin
Hall conductancesthe ratio of the transverse spin current and
the applied electric fieldd reaches a universal value ofe/8p
in clean systems.32 However, impurities are believed to
modify this universal value33,40 and in addition, the exact
influence of vertex corrections on the spin-Hall conductivity
is currently under investigation.38,42,43

In this paper we consider the spin susceptibilities of a
2DEG with Rashba and Dresselhaus spin-orbit coupling.
Due to the strong 2DEG confinement the Dresselhaus cou-
pling reduces to terms linear in momentum. For such linear
momentum spin-orbit coupling the spin susceptibility can be
used to characterize other transport properties. We calculate
the susceptibilities using a free electron model and relate
them to the electric-field-induced spin density. Also, we de-
rive continuity equationsswith source termsd for the spin
density and spin current, similar to the equations already
derived for only Rashba coupling.36 These equations are ex-
act operator identities and via them we can relate the spin
current to the spin density. Via these relations the spin cur-
rent swhich is nontrivial to measured can be connected to the
spin density, or magnetization, which is easier to detect. The
susceptibilites play a central role in the free electron model,
since the Fourier transform of the spin density and the spin
current are proportional to the susceptibilities.

II. THE MODEL

We consider a two-dimensional electron gass2DEGd with
Rashba and Dresselhaus spin-orbit coupling. In the absence
of external fields the Hamiltonian may be written as

H =
px

2 + py
2

2m
+

a

"
spysx − pxsyd +

b

"
spysy − pxsxd, s1d

wherea and b are the Rashba and Dresselhausslineard co-
efficient in a 2DEG. It is easy to see thatfpx,Hg=fpy,Hg
=0, and thus we seek eigenstates of the form

ck,ssrd ; kr uksl =
eik·r

ÎA
usskd s2d

whereusskd is spinor to be determined andA is the system
area. Since the momenta are conserved it is possible to in-
troduce an effective magnetic field
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G = 1− bkx + aky

bky − akx

0
2 . s3d

The eigenspectrum can be written in terms of this effective
magnetic field, the eigenenergies of the Hamiltonian being
ss= ±1d

Esskd =
"2k2

2m
+ suG+u, s4d

and the corresponding spinor

usskd =
1
Î21 1

s
G+

uG+u
2 , s5d

whereG+=Gx+ iGy. Note that Eqs.s4d and s5d are also valid
for an in-plane magnetic fieldB using the substitutionG
→G+ 1

2gmBB, whereg andmB are the effectiveg-factor and
Bohr magneton, respectively.

Writing the quasimomentum in polar coordinatesk
=kscosu ,sinud, the eigenspectrum of the Hamiltonian in Eq.
s1d becomes

Esskd =
"2k2

2m
+ skÎsa2 + b2dgsud, s6d

wheregsud=1−sins2fdsins2ud determines the anisotropy of
the Fermi surfaces and the corresponding eigenspinors are

usskd =
1
Î21 1

− s
cossfde−iu + i sinsfdeiu

gsud
2 . s7d

Here we have introduced the following parametrization of
the spin-orbit coupling strength:

sinsfd =
a

Îa2 + b2
, f P f− p/2,p/2g. s8d

The eigenfunctions in Eq.s7d have the interesting property
that they depend on the spin-orbit coupling parametersa and
b only via the anglef. This allows one to take the limit
a ,b→0 such that the anglef remains fixed and the result-
ing eigenvectors in Eq.s9d are alsosdegenerated eigenvectors
of the free electron Hamiltonian.44 As was pointed out in
Ref. 37, the Kramers conjugate state ofck,ssrd is c−k,ssrd,
i.e., they belong to the same branch.

III. SPIN SUSCEPTIBILITIES AND CURRENT-INDUCED
MAGNETIZATION

For a weak driving field the response of the system is
obtained by the Kubo formalism. Due to the spin-orbit cou-
pling, a pure electric field driving results in a nonzero mag-
netic response. Since the spin-orbit term in Eq.s1d is linear
in momenta, both the response functions due to magnetic and
electric perturbation can be expressed with spin susceptibili-
ties. Theh=x,y,z component of the spin density operator is
defined as

rhsrd = o
n

sn,hsrd = o
n

sn,hdsr − rnd, s9d

wherern andsn,h are the position operator and Pauli matrix,
respectively, of thenth electron. For a translationally invari-
ant system, the wave vector and frequencysq,vd dependent
susceptibilities are

xhh8sq,vd =E
0

`

dteivt i

"A
kfrhsq,td,rh8s− qdgl, s10d

=E
0

`

dteivt 1

Ao
k,s

if ks

"
kfshsq,td,sh8s− qdglks, s11d

wherefks= ffEsskdg with f being the Fermi distribution func-
tion and we used the notationk¯lks=kksu¯ uksl. The fre-
quency should be viewed asiv→ isv+ i"−1ed to regularize
the integral. The operators in Eq.s11d refer to single particle
operators. This susceptibility is a spin density response func-
tion and to get the magnetization response function, each
spin density operator in Eq.s11d should be multiplied with
the electron effective magnetic momentgmB/2. Using Eq.
s11d and the eigenspectrum represented by Eqs.s6d and s7d
the susceptibilities for a spatially homogeneous perturbation
sq=0d become

xxxsvd =
1

s2pd2"
E

0

2p

du
sa sinu − b cosud2

sa2 + b2d1/2Îgsud
E

k+sud

k−sud

dk

3
k2

4sa2 + b2dgsudk2 − s"v + ied2 , s12d

xxysvd =
1

s2pd2"
E

0

2p

du
sa sinu − b cosudsb sinu − a cosud

sa2 + b2d1/2Îgsud

3E
k+sud

k−sud

dk
k2

4sa2 + b2dgsudk2 − s"v + ied2 . s13d

Note that allq=0 dependence has been dropped for clarity.
Here we assumed zero temperature and the Fermi distribu-
tion function was replaced by a step function. The resulting
Fermi contoursk±sud are the solutions of

kF
2 = k±sud2 ± k±sudkSO

Îgsud, s14d

where kF
2 =2meF /"2 is the squared Fermi momentum and

kSO=mÎa2+b2/"2. Thek integral results in a linear term and
a term involving an inverse tangent ink±sud and the subse-
quent angular integrals cannot be solved analytically. The
inverse tangent can be expanded in powers ofkSO/kF!1,
resulting in the following lowest order result:

xxxsvd = xyysvd =
m

2p"2S1 +
s"v + ied2

ps
Î«s

2 − s"v + ied2D ,

s15d

where the resonance energies aree±
2=8eSOeFf1±sins2fdg,

with eSO=msa2+b2d /"2. Using the same procedure we can
calculate the off-diagonal susceptibilities in a similar manner
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xxysvd = xyxsvd =
dxsvd − xxxsvd

sins2fd
− sins2fddxsvd,

s16d

where we have defined

dxsvd =
m

2p"2

8«SO«F

ps
Î«s

2 − s"v + ied2
. s17d

The magnetization is related to the spin density in Eq.s9d
throughmsrd= 1

2gmBrsrd which leads to the standard linear
response relation

mhsq,vd = S1

2
gmBD2

xhh8sq,vdBh8sq,vd. s18d

To obtain the Pauli paramagnetic susceptibility one should
take the following order of limits:45

lim
q→0

lim
v→0

xhh8sq,vd =
m

p"2dh,h8. s19d

The diamagnetic contribution can be disregarded since we
assume an in-plane magnetic field. The susceptibilities in
Eqs. s12d and s13d are calculated for the reverse order of
limits done in Eq.s19d. ThesevÞ0 susceptibilities are the
spin-orbit contribution coming from the region ink space
where only oness=−1d of the two branches is occupied.55

Also, the spin currentssee discussion belowd which results
from the spin-orbit interaction is nonzero due to contribu-
tions from the k space area between the two Fermi
contours.32,33,41 Thus we only focus on this contribution
when we relate the susceptibilities to the spin-orbit mediated
spin densities and the spin currents.

The value of the resonance frequency is determined by
Î8«SO«F<0.16 meV=40 GHz for typical GaAs para-
meters:46 a=0.5310−9 meV m and electron densityne=4
31015 m−2. For lower frequencies the susceptibilities remain
nominally constant. In the limita!b the lowest order con-
tribution to Eqs.s15d and s16d become

xxxsvd =
m

2p"2

1

1 −
s"v + ied2

8«SO«F

, s20d

xxysvd = −
m

2p"2

a

b

1 −
s"v + ied2

4«SO«F

S1 −
s"v + ied2

8«SO«F
D2 . s21d

Here we have not included impurities and thus the regular-
ization parametere can strictly only be attributed to an adia-
batic turning on of the external electric or magnetic field.

In the absence of electric and magnetic fields, the spin-
orbit interaction does not give rise to a net magnetization.
Even though the spin-orbit interaction has the form of a
momentum-dependent magnetic field, the total contribution
averages to zero.47,48 However, although the spin-orbit in-
duced splitting does not give rise to an equilibrium magne-

tization, there is an asymmetry in the local magnetic field in
momentum space, i.e., the local magnetic field is odd under
wave vector reversal, and any translation of the Fermi sphere
away from theG point will induce a magnetization.15 Apply-
ing a homogeneous electric fieldEsr ,td=E0e−ivt to the sys-
tem will give rise to the following time-dependent perturba-
tion:

Vstd = −
e

iv
E0e−ivt · jsq = 0d, s22d

where jsqd is the Fourier transform of the current density
operator

jsrd = o
n

jnsrd = o
n

1

2
hdsr − rnd,vnj, s23d

and the velocity operatorvn for the Hamiltonian in Eq.s1d is
given by

vn =1
1

m
pn,x −

a

"
sn,y −

b

"
sn,x

1

m
pn,y +

a

"
sn,x +

b

"
sn,y

2 . s24d

From linear response theory the Fourier transform of the
electric field induced spin density may be written as

krxsvdl =
eExsvd

iv
Sa

"
xxysvd +

b

"
xxxsvdD

−
eEysvd

iv
Sa

"
xxxsvd +

b

"
xxysvdD , s25d

krysvdl =
eExsvd

iv
Sa

"
xxxsvd +

b

"
xxysvdD

−
eEysvd

iv
Sa

"
xxysvd +

b

"
xxxsvdD . s26d

This result is reminiscent of the pure magnetic field induced
spin density, except hereeEysvd / iv plays the role of mag-
netic field, via the spin-orbit coupling. As was pointed out in
Refs. 15 and 41 the dc limit corresponds to replacing the
frequency with momentum scatteringiv→−1/t.

Multiplying Eqs. s25d and s26d by the sample area will
give the total number of induced magnetic moments, mea-
sured in units of gmB/2. Applying an electric fieldE
<100 V/cm to a GaAs 2DEG’s with high mobilitys" /t
<10−2 meVd and a sample area ofA=s500 mmd2, the num-
ber of magnetic momentssBohr magnetonsd would be
around 2.53107. For a 2DEG thickness of a few nm these
magnetic moments produce a magnetic field of the order
10−6 T. Probing 2DEG properties using ESR techniques has
been succesfully used to determine the spin-orbit splitting49

and other 2DEG spin properties,50,51Using similar ESR tech-
niques, the spin-orbit coefficientsa ,b could in principle be
determined by measuring different spin density component
for different direction of driving current, as a function ofa
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which could be tuned by gate voltages.46,52,53 Such an in-
duced spin density could be detected by Faraday rotation
measurements.19

IV. CONNECTION TO SPIN CURRENT

The usual way of deriving the operator version of the
particle continuity equation is to start from the definition of
the density operator

rsr,td = o
n

dfr − rnstdg, s27d

and from there one can derive the standard continuity equa-
tion,

]

]t
rsr,td + ¹ · jsr,td = 0 s28d

from the Heisenberg equation of motion forrsr ,td. The form
of the current density in Eq.s28d is uniquely determined by
the Heisenberg equation of motion. For the Hamiltonian in
Eq. s1d the current density is given by Eq.s23d, using the
velocity operator in Eq.s24d. In the case of the spin density
operator

rhsr,td = o
n

sn,hstddfr − rnstdg, s29d

the same procedure of evaluating the Heisenberg equation
motion will not result in a unique definition of the associated
spin current density. The reason is that the precession due to
the momentum dependent spin-orbit magnetic field intro-
duces additional terms into the equation of motion. In order
to proceed one has to postulate a form for the spin current
density. The most widely used definition, and physically rea-
sonable, is the following:

jhsrd = o
n

1

2
hsn,h,jnsrdj. s30d

This form of the spin current is Hermitian and reduces to the
standard spin current form when the velocity operator is spin
independent.54 Having determined the form of the spin cur-
rent the resulting continuity equations become

]

]t
rxsr,td + ¹ · jxsr,td = −

2ma

"2 jx
zsr,td +

2mb

"2 j y
zsr,td,

s31d

]

]t
rysr,td + ¹ · jysr,td = −

2ma

"2 j y
zsr,td +

2mb

"2 jx
zsr,td,

s32d

]

]t
rzsr,td + ¹ · jzsr,td = +

2ma

"2 f j y
xsr,td + jx

ysr,tdg

−
2mb

"2 f jx
xsr,td + j y

ysr,tdg. s33d

Similar equations have already been derived for pure Rashba

coupling.36 The above Eqs.s31d–s33d are exact relation for a
systems with spin-orbit coupling linear in momentum and
including impurities would not change their form.56,57

Taking the thermal average of Eqs.s31d–s33d gives partial
differential equation connecting the spin densities and spin
currents. Based on these equations one can make a few ob-
servation on the nature of the spin current, without explicitly
solving them. First of all, for a homogeneous system in the
stationary limit the right-hand side of Eq.s33d must vanish
for all values ofa, b. This is trivially satisfied for allkjhl
=0, but more interestingly also whenk j y

xl=−k jx
yl and k jx

xl=
−k j y

yl. It is easy to show that the latter case is true in equi-
librium

k jx
xl = − k j y

yl =
1

3p

b

"
S m

"2D2

sa2 − b2d, s34d

k jx
yl = − k j y

xl =
1

3p

a

"
S m

"2D2

sa2 − b2d, s35d

which covers the results of Ref. 37 as special cases. In par-
ticular, the current expectation values vanish ata= ±b due to
the additional concerved quantity arising at these points.4

Furthermore, Eq.s33d shows these equilibrium currents do
not act as source terms for the spin density, since the rhs
always vanishes.

Let us now consider a homogeneous system such that the
divergence terms vanish. By using Eqs.s31d and s32d one
can derive the following identity for the Fourier transform of
the x and y component of the averagez-polarized spin cur-
rent:

k jx
zsvdl =

"2ivfakrxsvdl + bkrysvdlg
2msb2 − a2d

, s36d

k j y
zsvdl =

"2ivfbkrxsvdl + akrysvdlg
2msb2 − a2d

. s37d

These relations establish a connection between the spin cur-
rent componentsk jx,y

z l and thex,y components of the spin
density, in the frequency domain. This is quite useful since
the spin current, which is hard to detect, is related to a quan-
tity which is easier to measure. Also, Eqs.s36d ands37d is a
good starting point for connecting spin current and spin den-
sity response functions using standard Kubo formalism.

Let us now assume a homogeneous electric field applied
in the y direction. The spin conductivities are defined as the
ratio of the spin current and applied electric field

shy
z svd =

"

2
k jh

zsvdl

Eysvd
, s38d

where the factor" /2 in the definition of the spin conductiv-
ity is due to our definition of the spin current in terms Pauli
matrices and not the spin operators, i.e.,S="s /2. Using
Eqs.s25d and s26d to relate the spin density to the suscepti-
bilities we obtain the following result for the ac spin conduc-
tivities:
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sxy
z svd =

e"2

4m

a2 − b2

b2 + a2dxswd, s39d

syy
z svd = −

a2 − b2

2ba

e"2

4m
fdxswd − xxxswdg. s40d

These equations for the spin conductivities, along with Eqs.
s15d ands17d, in thev→0 limit reproduce the result in Ref.
34 up to a sign convention forb. For either pure Rashba or
Dresselhaus we have the following result:

sxy
z svd = ±

e

8p1 1

1 −
s"v + ied2

8eSO«F
2 , s41d

syy
z svd = 0 s42d

the upperslowerd sign refers to a pure RashbasDresselhausd.
Taking the limit e→0 recovers the universal limit of spin
Hall conductancesxy

z sv→0d=e/8p.32

V. CONCLUSION

We calculated the frequency-dependent spin susceptibili-
ties for a 2DEG with both Rashba and Dresselhaus spin-orbit
coupling. The suspectibilities have resonance peaks whose
position depends on the relative magnitude of the Rashba

and Dresselhaus coefficients. The position of the resonance
could be tuned via the gate dependence ofa. We derive a
connection between spin density and the spin current starting
from the Heisenberg equation of motion for the spin density.
Unlike the particle density, the resulting continuity equations
have spin current source terms due to the spin-orbit interac-
tion. Using these relation we connect the spin current to the
spin density. In the free electron model the spin current and
the spin-Hall coefficient are proportional to the susceptibility.
Indeed, using the continuity equations and the susceptibili-
ties calculated here we recover the universalsballisticd value
of the spin-Hall conductance. Such relationsfEqs. s36d and
s37dg might help elucidate the nature of spin currents in a
similar way to Ref. 41 which discussed the relation between
the spin current and the dielectric function. By calculating
the spin density with the correct impurity contribution would
automatically give the spin current. We are confident that
these and similar considerations will contribute to a deeper
understanding of the role of impurities in the spin-Hall ef-
fect.
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