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Spin susceptibilities, spin densities, and their connection to spin currents
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We calculate the frequency-dependent spin susceptibilities for a two-dimensional electron gas with both
Rashba and Dresselhaus spin-orbit interactions. The resonances of the susceptibilities depend on the relative
values of the Rashba and Dresselhaus spin-orbit constants, which could be manipulated by gate voltages. We
derive exact continuity equations, with source terms, for the spin density and use those to connect the spin
current to the spin density. In the free electron model the susceptibilities play a central role in the spin
dynamics since both the spin density and the spin current are proportional to them.
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[. INTRODUCTION structure of the holes and electron there is an important dis-
tinction between the two since in the electron system the spin

The ability to manipulate spin states in semiconducting | d h 0 of th X d
and metallic nanostructures is now the focus of much experit@ll conductancéthe ratio of the transverse spin current an
the applied electric fieldreaches a universal value ef8w

mental and theoretical attention. Some spintronics applica; | @ ; . i
tion are already in u¢€ and more have been proposed, rang- Cléan systems. However, impurities are believed to

ing from spin field-effect transistots to spin qubit$? In  modify this universal valu€“® and in addition, the exact
many cases the spin-orbit interaction can be used to manipiffluence of vertex corrections 32}35‘9 spin-Hall conductivity
late the electron spin via electronic med&rhis sort of elec- Is currently under investigatioff:*>

; : P ; : In this paper we consider the spin susceptibilities of a
tronic manipulation is important since technologically, elec- . . X .
tric field control of spins is preferred over magnetic field 2DEG with Rashba and Dresselhaus spin-orbit coupling.

. ; Due to the strong 2DEG confinement the Dresselhaus cou-
control. Also, electronic control of spins has revealed many

. . S . ! . . Ipling reduces to terms linear in momentum. For such linear
interesting physics in experiments involving semiconductor, oo e o spin-orbit coupling the spin susceptibility can be
heterostructurey!°

; _ o used to characterize other transport properties. We calculate
Some time ago it was proposed that electric fields coulghe sysceptibilities using a free electron model and relate
lead to magnetization in antiferromagnetic materials fulfill-them to the electric-field-induced spin density. Also, we de-
ing certain symmetrie§. This is the so-called magnetoelec- rive continuity equationgwith source termsfor the spin
tric effect. The magnetoelectric effect was considered foidensity and spin current, similar to the equations already
conductors with special symmetry propertfeand for pyro-  derived for only Rashba couplirf§.These equations are ex-
electric superconductot$.Electric-field-induced spin orien- act operator identities and via them we can relate the spin
tation in semiconductors due to linear in momentum spincurrent to the spin density. Via these relations the spin cur-
orbit interaction was also discussed in Refs. 14—16. Theregent(which is nontrivial to measujean be connected to the
has been renewed interest in this subject since this inducespin density, or magnetization, which is easier to detect. The
spin polarization might serve as spin injectors in certainsusceptibilites play a central role in the free electron model,
semiconductor heterostructurés8Only recently there have since the Fourier transform of the spin density and the spin
been experiments which seem to demonstrate such currestirrent are proportional to the susceptibilities.
induced polarization of spins via spin-orbit interactf§?9
A somewhat related effect is the so-called spin-Hall ef- Il. THE MODEL

fect. In the normal Hall effect the electrons are deflected by e consider a two-dimensional electron gaBEG) with
the Lorentz force, but in the spin-Hall effect spins are scatRashba and Dresselhaus spin-orbit coupling. In the absence

tered by impurities preferentially to the leftight) if their  of external fields the Hamiltonian may be written as
spins point “up”(“down”) due to spin-orbit interactiofi-22

2 2
is Wi i i Pxtpy « B
Th|s_ will result in a spin current,_but no net charge current, H=x"Fy, = (pyoy = Pxoy) + —(pyoy — pxoy), (1)
flowing perpendicular to the applied charge current. Such an 2m h h

extrinsic transverse spin current was already investigated b )
Dyakononov and Perzl some time ago in R)(/af. 23 agd morg/h.e.rea ‘T"”dﬁ are the R_ashba and Dresselhahm_earj co-
recently by Hirsct¥* Presently there is much interest in spin- Eff'c'ent in a 2DEG. It IS easy to see thigh, H]=[py,H]

orbit mediated spin-Hall effect in semiconducting hetero—_o’ and thus we seek eigenstates of the form

structures. Here the effect can appear in H8té! or ekr

electron-dopet 42 semiconductors due to band structure Pies(r) E<r|ks>:,,_gus(k) (2)
properties and impurities are not necessary. Thus, the term X

intrinsic spin Hall effect is used to distinguish this from the whereug(k) is spinor to be determined alis the system
previously discussed mechanism since it occurs already iarea. Since the momenta are conserved it is possible to in-
the absence of impuriti€€:32 Due to differences in the band troduce an effective magnetic field
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™ Bl aky p1) = 2 01 = 2 07,8 = 1), (9)
= Bk,—ak |. (3) n n
0 wherer, anda,, ,, are the position operator and Pauli matrix,

respectively, of theth electron. For a translationally invari-

The eigenspectrum can be written in terms of this effectiveam system, the wave vector and frequefgyw) dependent
magnetic field, the eigenenergies of the Hamiltonian bein%usceptibili:cies are

(s=%1)
RAR (@, :f dte——(p (q.0).p.(-q], (10
Es(k) - % +S|F |, (4) X7;77 (q (1)) 0 hA([pr](q ) pr; ( Q)]> ( )
and the corresponding spinor » 1 if
:f dté“’tRE f([an(q,t),an/(— D (1)
1 1 0 k,s
Ul =73 L | (5 wheref,=f[EL(K)] with f being the Fermi distribution func-
| tion and we used the notatiof- ) s=(ks|--|ks). The fre-

where[*=T,+il',. Note that Eqs(4) and(5) are also valid ~ d4€ncy should be viewed '?"5’—”(“”'%_16) to regularize

for an in-plane magnetic fiel® using the substitutiod”  the integral. The operators in EQLY) refer to single particle

*)F‘i‘%g,u,BB' whereg and ug are the effectivay-factor and operators. This susceptlblllty_ls a spin density response func-

Bohr magneton, respectively. tion and to get the magnetization response fur?ctlonZ each
Writing the quasimomentum in polar coordinatés spin density operator in Eq11) should be multiplied with

=k(cos#, sin 6), the eigenspectrum of the Hamiltonian in Eq. the electron effective magnetic momegjig/2. Using Eq.
(1)(becomes ) gensp g (11) and the eigenspectrum represented by E@jsand (7)

the susceptibilities for a spatially homogeneous perturbation

72K2 ’ - =0) become
Ey(k) ==+ skl + £99(6), © @0
m ()= 7 (asinfg- B cosh)? Ua)dk
whereg(6)=1-sir(2¢)sin(26) determines the anisotropy of Xl @)= om2h o (a?+B)Y2g(0) k(0
the Fermi surfaces and the corresponding eigenspinors are 2
X 12
1 1 | A+ PR (hw+19 (12
us(k):TE _Scos(¢)e"9+i sin(¢)e’? |. 7
v g(6) 1 (*"  (asing-Bcosé)(Bsin6-acoso)
. . o Xl @) = 2m)2h do 2 p2\U2 ) oy
Here we have introduced the following parametrization of @m)TJo (@ + B9 g(0)
the spin-orbit coupling strength: k_(6) K2
X f dhgms (13
sin(¢) = rza >, ¢ e[~ 7l2,72]. (8) o At B0~ (o tie)
Vo + B

Note that allg=0 dependence has been dropped for clarity.
The eigenfunctions in Eq7) have the interesting property Here we assumed zero temperature and the Fermi distribu-
that they depend on the spin-orbit coupling parameteaad  tion function was replaced by a step function. The resulting
B only via the angleg. This allows one to take the limit Fermi contours.(6) are the solutions of

a,B— 0 such that the anglé remains fixed and the result- —

ingﬁeigenvectors in Eq9) a?rgalsc(degeneraﬁeeigenvectors ké = ke(6) + ku()kso\9(6), (14)

of the free electron Hamiltonial. As was pointed out in where k2:2me,:/h2 is the Squared Fermi momentum and
Ref. 37, the Kramers conjugate state afs(r) is ¢y s(r),  kgo=mia?+ B2/42 Thek integral results in a linear term and

i.e., they belong to the same branch. a term involving an inverse tangent ka(6) and the subse-
quent angular integrals cannot be solved analytically. The
IIl. SPIN SUSCEPTIBILITIES AND CURRENT-INDUCED inverse tangent can be expanded in powerkgf k<1,
MAGNETIZATION resulting in the following lowest order result:

For a weak driving field the response of the system is m (hw + i €)?
obtained by the Kubo formalism. Due to the spin-orbit cou-  Xxx(®@) = xyy(®) = 27rﬁ2<1 + 2 _ 2),
pling, a pure electric field driving results in a nonzero mag- Hs Ves— (o +ie)
netic response. Since the spin-orbit term in EQ.is linear (15)
in momenta, both the response functions due to magnetic and
electric perturbation can be expressed with spin susceptibilwhere the resonance energies afe8esoer[1+sin2¢)],
ties. They=x,y,z component of the spin density operator is with eso=m(a?+32)/%2. Using the same procedure we can
defined as calculate the off-diagonal susceptibilities in a similar manner
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Sx(w) = xw) . tization, there is an asymmetry in the local magnetic field in
Xy(@) = xyx(@) = W = sin(2¢) ox(w), momentum space, i.e., the local magnetic field is odd under
wave vector reversal, and any translation of the Fermi sphere
(16) away from thel” point will induce a magnetizatiot?. Apply-

where we have defined ing a homogeneous electric fiek(r,t)=E% ! to the sys-
tem will give rise to the following time-dependent perturba-
m 8 ion:
5)((0)) _ ESOEE 17) tion:

2 7 .2
2mh? Hs ng —(hw+ie)?

The magnetization is related to the spin density in .
through m(r):%g,qu(r) which leads to the standard linear
response relation

V() = - %E‘)e"wt j(q=0), (22)

where j(q) is the Fourier transform of the current density

operator
(Jome]
m , =\ = (q,w)B,,(q,w). 18 . . 1
n(q CU) 29/-1’8 Xnn (q w) 7 (q w) ( ) ](r) — Ejn(r) — 2 5{5“. _ rn)vvn}1 (23)
n n
To obtain the Pauli paramagnetic susceptibility one should
take the following order of limit4® and the velocity operatar, for the Hamiltonian in Eq(1) is
given by
L m
(I;LT:) JJTO Xy (0 @) = W&,M,. (19 1 o

Epn,x - %O'n,y - %O'n,x

The diamagnetic contribution can be disregarded since we v, = _ (24)
assume an in-plane magnetic field. The susceptibilities in lp +EU +25

Egs. (12) and (13) are calculated for the reverse order of m ™Y Mgy

limits done in Eq.(19). Thesew # 0 susceptibilities are the ) )

spin-orbit contribution coming from the region i space From_lln_ear response t_heory t_he Fourier trgnsform of the
where only ong(s=-1) of the two branches is occupiéd. electric field induced spin density may be written as

Also, the spin curren{see discussion belgwvhich results

from the spin-orbit interaction is nonzero due to contribu- (plw)y = eE_X(w)<§XXy(w) +§Xxx(w))
tions from the k space area between the two Fermi
contours®23341 Thus we only focus on this contribution eE(w) (a B
when we relate the susceptibilities to the spin-orbit mediated » (%Xxx(w) + %Xxy(“ﬂ)r (25)
spin densities and the spin currents.
The value of the resonance frequency is determined by (@)
V8egoer~0.16 meV=40GHz for typical GaAs para- _eE(w)( a B
meters’® «=0.5x10"° meV m and electron density,=4 (pylo)) = iw (ﬁXXX(w) " ﬁxxy(w))
X 10* m~2. For lower frequencies the susceptibilities remain
nominally constant. In the limitr<< 8 the lowest order con- - M(EX (w) + EX (w)>_ (26)
tribution to Egs.(15) and(16) become iw \a"Y h
m 1 This result is reminiscent of the pure magnetic field induced
Xl @) = 2mh2 (ho+ie)?’ (20) spin density, except hereE(w)/iw plays the role of mag-
1- TBoee netic field, via the spin-orbit coupling. As was pointed out in
ESOPF Refs. 15 and 41 the dc limit corresponds to replacing the
o frequency with momentum scattering — —1/7.
1- (fiwtie) Multiplying Egs. (25) and (26) by the sample area will
m « degoer give the total number of induced magnetic moments, mea-
Xxy(“’):_zﬂ.hzl[_g (ho+ie)?\2" (2D sured in units ofgug/2. Applying an electric fieldE
<1_W> ~100 V/cm to a GaAs 2DEG’s with high mobilitya/
SO°F

~1072 meV) and a sample area @éf=(500 um)?, the num-
Here we have not included impurities and thus the regularber of magnetic momentg$Bohr magnetons would be
ization parametee can strictly only be attributed to an adia- around 2.5<10’. For a 2DEG thickness of a few nm these
batic turning on of the external electric or magnetic field. magnetic moments produce a magnetic field of the order
In the absence of electric and magnetic fields, the spin10® T. Probing 2DEG properties using ESR techniques has
orbit interaction does not give rise to a net magnetizationbeen succesfully used to determine the spin-orbit splitting
Even though the spin-orbit interaction has the form of aand other 2DEG spin properti@s>Using similar ESR tech-
momentum-dependent magnetic field, the total contributiomiques, the spin-orbit coefficients, 8 could in principle be
averages to zerty*® However, although the spin-orbit in- determined by measuring different spin density component
duced splitting does not give rise to an equilibrium magne-for different direction of driving current, as a function af
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which could be tuned by gate voltagé$253Such an in- coupling® The above Eq931)—(33) are exact relation for a
duced spin density could be detected by Faraday rotatioaystems with spin-orbit coupling linear in momentum and

measurements. including impurities would not change their fot%%’
Taking the thermal average of Eq81)—(33) gives partial
IV. CONNECTION TO SPIN CURRENT differential equation connecting the spin densities and spin

o ] currents. Based on these equations one can make a few ob-
The usual way of deriving the operator version of theseryation on the nature of the spin current, without explicitly
particle continuity equation is to start from the definition of solving them. First of all, for a homogeneous system in the

the density operator stationary limit the right-hand side of E¢33) must vanish
_ for all values ofw, B. This is trivially satisfied for alkj?)
p(r, 0 _g Ar =], @7 =0, but more interestingly also whe(g)=—(j3) and(j})=

) o =(j}»- It is easy to show that the latter case is true in equi-
and from there one can derive the standard continuity equajyrium

tion, ,
. . 1B8/m
J Xy — _ /iV\ = __(_) 2_ 2 , 34
o0+ ¥ (.0 =0 (28) (=-lp=5_2172) (@=5) (34
. . . 2
from the Heisenberg equation of motion falr , ). The form (% =~ = lam (2= B) 35
of the current density in Eq28) is uniquely determined by x Y 3k \ A2 ’

the Heisenberg equation of motion. For the Hamiltonian in ]
Eq. (1) the current density is given by E3), using the which covers the results of Ref. 37 as special cases. In par-

velocity operator in Eq(24). In the case of the spin density ficular, the current expectation values vaniskratt 5 due to
operator the additional concerved quantity arising at these pdints.

Furthermore, Eq(33) shows these equilibrium currents do
p,(r,t) = > o, 081 =], (29)  not act as source terms for the spin density, since the rhs
n always vanishes.

. . . Let us now consider a homogeneous system such that the
the same procedure of evaluating the Heisenberg equatlocﬂvergence terms vanish. By using Eq81) and (32) one
motion will not result in a unique definition of the associated n derive the following identity for the Fourier transform of
spin current density. The reason is that the precession due fﬁex andy component of the averagepolarized spin cur-
the momentum dependent spin-orbit magnetic field intro—rent_ y P gep P
duces additional terms into the equation of motion. In order ~
to proceed one has to postulate a form for the spin current . 1121w & p(@) + Blpy())]
density. The most widely used definition, and physically rea- (@) = oM - ) : (36)
sonable, is the following: proa

12w Blpd w)) + alpy(w))]
2m(f° - a?) '

. 1 . .
i) = 2 o (0} (30 (i§(w)) = (37

n
This form of the spin current is Hermitian and reduces to thelhese relations establish a connection between the spin cur-
standard spin current form when the velocity operator is spinent component$j§yy> and thex,y components of the spin
independent* Having determined the form of the spin cur- density, in the frequency domain. This is quite useful since

rent the resulting continuity equations become the spin current, which is hard to detect, is related to a quan-
tity which is easier to measure. Also, Eq36) and(37) is a
J . 2Ma . 2mgB. . . . i >
Lot )+ VX0 == T A + ALY, good starting point for connecting spin current and spin den-
it h? hz sity response functions using standard Kubo formalism.
(3D Let us now assume a homogeneous electric field applied

in they direction. The spin conductivities are defined as the
ratio of the spin current and applied electric field

d . 2ma 2mpB.
D10+ V0 == 2z + E e,
at h f o
@) 505w
o) = =, 38
(@) E () (38)
%pz(r,t) +V j4rt)=+ %m(r,t) +j(r,1)] where the factori/2 in the definition of the spin conductiv-

ity is due to our definition of the spin current in terms Pauli
2mg_, o matrices and not the spin operators, i8s540/2. Using
- ?[Jx(ﬁt) +j3(r,0]. (33)  Egs.(25) and(26) to relate the spin density to the suscepti-
bilities we obtain the following result for the ac spin conduc-
Similar equations have already been derived for pure Rashb#vities:
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eh? o - B and Dresselhaus coefficients. The position of the resonance
ohy(w) = Rmﬁ((w), (39 could be tuned via the gate dependencexofiVe derive a
connection between spin density and the spin current starting
o - B2 eh? from the Heisenberg equation of motion for the spin density.
o) = - 5 ——[Sx(W) = xol(W)]. (40)  Unlike the particle density, the resulting continuity equations
Ba 4m have spin current source terms due to the spin-orbit interac-

These equations for the spin conductivities, along with Eq tion. Using these relation we connect the spin current to the

(15 and(17), in the w— 0 limit reproduce the result in Ref. Spin d_ensity. In th? free electron m_odel the spin currepp f'jmd

34 up to a sign convention fg8. For either pure Rashba or the spln—Ha_lII coeff|C|ent. are proport!onal to the susceptlbllllty..

Dresselhaus we have the following result: I_ndeed, using the continuity equations and the_susceptlblll-
ties calculated here we recover the univeisallistic) value

1 of the spin-Hall conductance. Such relatidiis. (36) and

e
Ty(w) = ig W ' (41) (37] might help elucidate the nature of spin currents in a
1-—— similar way to Ref. 41 which discussed the relation between
Bescer the spin current and the dielectric function. By calculating
the spin density with the correct impurity contribution would
oy (@) =0 (42)  automatically give the spin current. We are confident that

these and similar considerations will contribute to a deeper
understanding of the role of impurities in the spin-Hall ef-
fect.

the upper(lower) sign refers to a pure Rashkaresselhaus
Taking the limit e— 0 recovers the universal limit of spin
Hall conductancery (w— 0) =e/87.%
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