435 research outputs found

    The Effects of Fourth Generation on the double Lepton Polarization in B \rar K \ell^+ \ell^- decay

    Full text link
    This study investigates the influence of the fourth generation quarks on the double lepton polarizations in B \rar K \ell^+ \ell^- decay. Taking |V_{t's}V_{t'b}|\sim \{0.01-0.03\} with phase about 100^\circ, which is consistent with the b\to s\ell^+\ell^- rate and the B_s mixing parameter Delta m_{B_s}$, we obtain that the double lepton(muon and tau) polarizations are quite sensitive to the existence of fourth generation. It can serve as a good tool to search for new physics effects, precisely, to indirect search for the fourth generation quarks(t', b').Comment: 30 pages, 27 figure

    In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite

    Full text link
    In this work, we report the in-orbit demonstration of X-ray pulsar navigation with Insight-Hard X-ray Modulation Telescope (Insight-HXMT), which was launched on Jun. 15th, 2017. The new pulsar navigation method 'Significance Enhancement of Pulse-profile with Orbit-dynamics' (SEPO) is adopted to determine the orbit with observations of only one pulsar. In this test, the Crab pulsar is chosen and observed by Insight-HXMT from Aug. 31th to Sept. 5th in 2017. Using the 5-day-long observation data, the orbit of Insight-HXMT is determined successfully with the three telescopes onboard - High Energy X-ray Telescope (HE), Medium Energy X-ray Telescope (ME) and Low Energy X-ray Telescope (LE) - respectively. Combining all the data, the position and velocity of the Insight-HXMT are pinpointed to within 10 km (3 sigma) and 10 m/s (3 sigma), respectively.Comment: Accepted by the Astrophysical Journal Supplemen

    Discovery of delayed spin-up behavior following two large glitches in the Crab pulsar, and the statistics of such processes

    Full text link
    Glitches correspond to sudden jumps of rotation frequency (ν\nu) and its derivative (ν˙\dot{\nu}) of pulsars, the origin of which remains not well understood yet, partly because the jump processes of most glitches are not well time-resolved. There are three large glitches of the Crab pulsar, detected in 1989, 1996 and 2017, which were found to have delayed spin-up processes before the normal recovery processes. Here we report two additional glitches of the Crab pulsar occurred in 2004 and 2011 for which we discovered delayed spin up processes, and present refined parameters of the largest glitch occurred in 2017. The initial rising time of the glitch is determined as <0.48<0.48 hour. We also carried out a statistical study of these five glitches with observed spin-up processes. The two glitches occurred in 2004 and 2011 have delayed spin-up time scales (τ1\tau_{1}) of 1.7±0.81.7\pm0.8\,days and 1.6±0.41.6\pm0.4\,days, respectively. We find that the Δν\Delta{\nu} vs. Δν˙|\Delta{\dot\nu}| relation of these five glitches is similar to those with no detected delayed spin-up process, indicating that they are similar to the others in nature except that they have larger amplitudes. For these five glitches, the amplitudes of the delayed spin-up process (Δνd1|\Delta{\nu}_{\rm d1}|) and recovery process (Δνd2\Delta{\nu}_{\rm d2}), their time scales (τ1\tau_{1}, τ2\tau_{2}), and permanent changes in spin frequency (Δνp\Delta{\nu}_{\rm p}) and total frequency step (Δνg\Delta{\nu}_{\rm g}) have positive correlations. From these correlations, we suggest that the delayed spin-up processes are common for all glitches, but are too short and thus difficult to be detected for most glitches.Comment: 25 pages, 8 figure

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure

    Measurements of D0D^{0} and DD^{*} Production in pp + pp Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We report measurements of charmed-hadron (D0D^{0}, DD^{*}) production cross sections at mid-rapidity in pp + pp collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays D0Kπ+D^{0}\rightarrow K^{-}\pi^{+}, D+D0π+Kπ+π+D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+} and their charge conjugates, covering the pTp_T range of 0.6-2.0 GeV/cc and 2.0-6.0 GeV/cc for D0D^{0} and D+D^{*+}, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is dσ/dyy=0ccˉd\sigma/dy|_{y=0}^{c\bar{c}} = 170 ±\pm 45 (stat.) 59+38^{+38}_{-59} (sys.) μ\mub. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation.Comment: 15 pages, 16 figures. Revised version submitted to Phys. Rev.
    corecore