737 research outputs found

    Transferrin receptor 2 (TfR2) and HFE mutational analysis in non‐C282Y iron overload: identification of a novel TfR2 mutation

    Get PDF
    Blood. 2002 Aug 1;100(3):1075-7. Transferrin receptor 2 (TfR2) and HFE mutational analysis in non-C282Y iron overload: identification of a novel TfR2 mutation. Mattman A, Huntsman D, Lockitch G, Langlois S, Buskard N, Ralston D, Butterfield Y, Rodrigues P, Jones S, Porto G, Marra M, De Sousa M, Vatcher G. SourceGenes, Elements, and Metabolism Program, Children and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada. Abstract Hereditary hemochromatosis (HH) is classically associated with a Cys282Tyr (C282Y) mutation of the HFE gene. Non-C282Y HH is a heterogeneous group accounting for 15% of HH in Northern Europe. Pathogenic mutations of the transferrin receptor 2 (TfR2) gene have been identified in 4 Italian pedigrees with the latter syndrome. The goal of this study was to perform a mutational analysis of the TfR2 and HFE genes in a cohort of non-C282Y iron overload patients of mixed ethnic backgrounds. Several sequence variants were identified within the TfR2 gene, including a homozygous missense change in exon 17, c2069 A-->C, which changes a glutamine to a proline residue at position 690. This putative mutation was found in a severely affected Portuguese man and 2 family members with the same genotype. In summary, pathologic TfR2 mutations are present outside of Italy, accounting for a small proportion of non-C282Y HH

    Germline mutations in MAP3K6 are associated with familial gastric cancer

    Get PDF
    Gastric cancer is among the leading causes of cancer-related deaths worldwide. While heritable forms of gastric cancer are relatively rare, identifying the genes responsible for such cases can inform diagnosis and treatment for both hereditary and sporadic cases of gastric cancer. Mutations in the E-cadherin gene, CDH1, account for 40% of the most common form of familial gastric cancer (FGC), hereditary diffuse gastric cancer (HDGC). The genes responsible for the remaining forms of FGC are currently unknown. Here we examined a large family from Maritime Canada with FGC without CDH1 mutations, and identified a germline coding variant (p.P946L) in mitogen-activated protein kinase kinase kinase 6 (MAP3K6). Based on conservation, predicted pathogenicity and a known role of the gene in cancer predisposition, MAP3K6 was considered a strong candidate and was investigated further. Screening of an additional 115 unrelated individuals with non-CDH1 FGC identified the p.P946L MAP3K6 variant, as well as four additional coding variants in MAP3K6 (p.F849Sfs*142, p.P958T, p.D200Y and p.V207G). A somatic second-hit variant (p.H506Y) was present in DNA obtained from one of the tumor specimens, and evidence of DNA hypermethylation within the MAP3K6 gene was observed in DNA from the tumor of another affected individual. These findings, together with previous evidence from mouse models that MAP3K6 acts as a tumor suppressor, and studies showing the presence of somatic mutations in MAP3K6 in non-hereditary gastric cancers and gastric cancer cell lines, point towards MAP3K6 variants as a predisposing factor for FGC.The following agencies provided funding for this project: Genome Canada, Genome Atlantic, Nova Scotia Health Research Foundation, Nova Scotia Research and Innovation Trust, Dalhousie Faculty of Medicine, Dalhousie Department of Ophthalmology, Health Canada, The Centre for Drug Research and Development, Capital District Health Authority, IWK Health Centre Foundation, Capital Health Research Fund, and The COMPETE/FEDER Portuguese Foundation for Science and Technology (FCT), Projects Ref. FCT PTDC/SAU-GMG/110785/2009 and Post-doc grant SFRH/BPD/79499/2011 to HP “financiados no âmbito do Programa Operacional Temático Factores de Competitividade (COMPETE) e comparticipado pelo fundo Comunitário Europeu FEDER.” MES is supported by the CHU Ste-Justine Centre de Recherche. The authors would like to acknowledge the contribution of: the Genome Quebec High Throughput Sequencing Platform; and Sónia Sousa and José Carlos Machado from the IPATIMUP Diagnostics Unit, Porto, Portugal. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Hidden diversity in Antarctica: Molecular and morphological evidence of two different species within one of the most conspicuous ascidian species

    Get PDF
    The Southern Ocean is one of the most isolated marine ecosystems, characterized by high levels of endemism, diversity, and biomass. Ascidians are among the dominant groups in Antarctic benthic assemblages; thus, recording the evolutionary patterns of this group is crucial to improve our current understanding of the assembly of this polar ocean. We studied the genetic variation within Cnemidocarpa verrucosa sensu lato, one of the most widely distributed abundant and studied ascidian species in Antarctica. Using a mitochondrial and a nuclear gene (COI and 18S), the phylogeography of fifteen populations distributed along the West Antarctic Peninsula and Burdwood Bank/MPA Namuncurá (South American shelf) was characterized, where the distribution of the genetic distance suggested the existence of, at least, two species within nominal C. verrucosa. When reevaluating morphological traits to distinguish between genetically defined species, the presence of a basal disk in one of the genotypes could be a diagnostic morphological trait to differentiate the species. These results are surprising due to the large research that has been carried out with the conspicuous C. verrucosa with no differentiation between species. Furthermore, it provides important tools to distinguish species in the field and laboratory. But also, these results give new insights into patterns of differentiation between closely related species that are distributed in sympatry, where the permeability of species boundaries still needs to be well understood.Fil: Ruiz, Micaela Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecológica; ArgentinaFil: Taverna, Anabela Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecológica; ArgentinaFil: Servetto, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecológica; ArgentinaFil: Sahade, Ricardo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecológica; ArgentinaFil: Held, Christoph. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung; Alemani

    The driver landscape of sporadic chordoma

    Get PDF
    Chordoma is a malignant, often incurable bone tumour showing notochordal differentiation. Here, we defined the somatic driver landscape of 104 cases of sporadic chordoma. We reveal somatic duplications of the notochordal transcription factor brachyury (T) in up to 27% of cases. These variants recapitulate the rearrangement architecture of the pathogenic germline duplications of T that underlie familial chordoma. In addition, we find potentially clinically actionable PI3K signalling mutations in 16% of cases. Intriguingly, one of the most frequently altered genes, mutated exclusively by inactivating mutation, was LYST (10%), which may represent a novel cancer gene in chordoma

    Germline CDH1 deletions in hereditary diffuse gastric cancer families

    Get PDF
    Germline CDH1 point or small frameshift mutations can be identified in 30–50% of hereditary diffuse gastric cancer (HDGC) families. We hypothesized that CDH1 genomic rearrangements would be found in HDGC and identified 160 families with either two gastric cancers in first-degree relatives and with at least one diffuse gastric cancer (DGC) diagnosed before age 50, or three or more DGC in close relatives diagnosed at any age. Sixty-seven carried germline CDH1 point or small frameshift mutations. We screened germline DNA from the 93 mutation negative probands for large genomic rearrangements by Multiplex Ligation-Dependent Probe Amplification. Potential deletions were validated by RT–PCR and breakpoints cloned using a combination of oligo-CGH-arrays and long-range-PCR. In-silico analysis of the CDH1 locus was used to determine a potential mechanism for these rearrangements. Six of 93 (6.5%) previously described mutation negative HDGC probands, from low GC incidence populations (UK and North America), carried genomic deletions (UK and North America). Two families carried an identical deletion spanning 193 593 bp, encompassing the full CDH3 sequence and CDH1 exons 1 and 2. Other deletions affecting exons 1, 2, 15 and/or 16 were identified. The statistically significant over-representation of Alus around breakpoints indicates it as a likely mechanism for these deletions. When all mutations and deletions are considered, the overall frequency of CDH1 alterations in HDGC is ∼46% (73/160). CDH1 large deletions occur in 4% of HDGC families by mechanisms involving mainly non-allelic homologous recombination in Alu repeat sequences. As the finding of pathogenic CDH1 mutations is useful for management of HDGC families, screening for deletions should be offered to at-risk families

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Germline mutations in CDH1 are infrequent in women with early-onset or familial lobular breast cancers

    Get PDF
    BACKGROUND: Germline mutations in CDH1 are associated with hereditary diffuse gastric cancer; lobular breast cancer also occurs excessively in families with such condition. METHOD: To determine if CDH1 is a susceptibility gene for lobular breast cancer in women without a family history of diffuse gastric cancer, germline DNA was analysed for the presence of CDH1 mutations in 318 women with lobular breast cancer who were diagnosed before the age of 45 years or had a family history of breast cancer and were not known, or known not, to be carriers of germline mutations in BRCA1 or BRCA2. Cases were ascertained through breast cancer registries and high-risk cancer genetic clinics (Breast Cancer Family Registry, the kConFab and a consortium of breast cancer genetics clinics in the United States and Spain). Additionally, Multiplex Ligation-dependent Probe Amplification was performed for 134 cases to detect large deletions. RESULTS: No truncating mutations and no large deletions were detected. Six non-synonymous variants were found in seven families. Four (4/318 or 1.3%) are considered to be potentially pathogenic through in vitro and in silico analysis. CONCLUSION: Potentially pathogenic germline CDH1 mutations in women with early-onset or familial lobular breast cancer are at most infrequent
    corecore