12,518 research outputs found

    The brightest OH maser in the sky: a flare of emission in W75 N

    Full text link
    A flare of maser radio emission in the OH-line 1665 MHz has been discovered in the star forming region W75 N in 2003, with the flux density of about 1000 Jy. At the time it was the strongest OH maser detected during the whole history of observations since the discovery of cosmic masers in 1965. The flare emission is linearly polarized with a degree of polarization near 100%. A weaker flare with a flux of 145 Jy was observed in this source in 2000 - 2001, which was probably a precursor of the powerful flare. Intensity of two other spectral features has decreased after beginning of the flare. Such variation of the intensity of maser condensation emission (increasing of one and decreasing of the other) can be explained by passing of the magneto hydrodynamic shock across regions of enhanced gas concentration.Comment: 9 pages with 2 figures, accepted for publication in Astronomy Letter

    OH (1720 MHz) Masers: A Multiwavelength Study of the Interaction between the W51C Supernova Remnant and the W51B Star Forming Region

    Full text link
    We present a comprehensive view of the W51B HII region complex and the W51C supernova remnant (SNR) using new radio observations from the VLA, VLBA, MERLIN, JCMT, and CSO along with archival data from Spitzer, ROSAT, ASCA, and Chandra. Our VLA data include the first 400 cm (74 MHz) continuum image of W51 at high resolution (88 arcsec). The 400 cm image shows non-thermal emission surrounding the G49.2-0.3 HII region, and a compact source of non-thermal emission (W51B_NT) coincident with the previously-identified OH (1720 MHz) maser spots, non-thermal 21 and 90 cm emission, and a hard X-ray source. W51B_NT falls within the region of high likelihood for the position of TeV gamma-ray emission. Using the VLBA three OH (1720 MHz) maser spots are detected in the vicinity of W51B_NT with sizes of 60 to 300 AU and Zeeman effect magnetic field strengths of 1.5 to 2.2 mG. The multiwavelength data demonstrate that the northern end of the W51B HII region complex has been partly enveloped by the advancing W51C SNR and this interaction explains the presence of W51B_NT and the OH masers. This interaction also appears in the thermal molecular gas which partially encircles W51B_NT and exhibits narrow pre-shock (DeltaV 5 km/s) and broad post-shock (DeltaV 20 km/s) velocity components. RADEX radiative transfer modeling of these two components yield physical conditions consistent with the passage of a non-dissociative C-type shock. Confirmation of the W51B/W51C interaction provides additional evidence in favor of this region being one of the best candidates for hadronic particle acceleration known thus far.Comment: Accepted to Ap

    Blind Inversion of Wiener Systems

    Get PDF
    A system in which a linear dynamic part is followed by a non linear memoryless distortion a Wiener system is blindly inverted This kind of systems can be modelised as a postnonlinear mixture and using some results about these mixtures an e cient algorithm is proposed Results in a hard situation are presented and illustrate the e ciency of this algorith

    Lorentz-Violating Electrostatics and Magnetostatics

    Get PDF
    The static limit of Lorentz-violating electrodynamics in vacuum and in media is investigated. Features of the general solutions include the need for unconventional boundary conditions and the mixing of electrostatic and magnetostatic effects. Explicit solutions are provided for some simple cases. Electromagnetostatics experiments show promise for improving existing sensitivities to parity-odd coefficients for Lorentz violation in the photon sector.Comment: 9 page

    Fermion Quasi-Spherical Harmonics

    Full text link
    Spherical Harmonics, Ym(θ,ϕ)Y_\ell^m(\theta,\phi), are derived and presented (in a Table) for half-odd-integer values of \ell and mm. These functions are eigenfunctions of L2L^2 and LzL_z written as differential operators in the spherical-polar angles, θ\theta and ϕ\phi. The Fermion Spherical Harmonics are a new, scalar and angular-coordinate-dependent representation of fermion spin angular momentum. They have 4π4\pi symmetry in the angle ϕ\phi, and hence are not single-valued functions on the Euclidean unit sphere; they are double-valued functions on the sphere, or alternatively are interpreted as having a double-sphere as their domain.Comment: 16 pages, 2 Tables. Submitted to J.Phys.

    Atmospheric parameters and rotational velocities for a sample of Galactic B-type supergiants

    Get PDF
    High resolution optical spectra of 57 Galactic B-type supergiant stars have been analyzed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulent velocity) and surface nitrogen abundances have been estimated using a non-LTE grid of model atmospheres. Comparisons of the projected rotational velocities have been made with the predictions of stellar evolutionary models and in general good agreement was found. However for a small number of targets, their observed rotational velocities were significantly larger than predicted, although their nitrogen abundances were consistent with the rest of the sample. We conclude that binarity may have played a role in generating their large rotational velocities. No correlation was found between nitrogen abundances and the current projected rotational velocities. However a correlation was found with the inferred projected rotational velocities of the main sequence precursors of our supergiant sample. This correlation is again in agreement with the predictions of single star evolutionary models that incorporate rotational mixing. The origin of the macroturbulent and microturbulent velocity fields is discussed and our results support previous theoretical studies that link the former to sub-photospheric convection and the latter to non-radial gravity mode oscillations. In addition, we have attempted to identify differential rotation in our most rapidly rotating targets.Comment: Submitted to MNRAS, 16 page

    TarO : a target optimisation system for structural biology

    Get PDF
    This work was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC) Structural Proteomics of Rational Targets (SPoRT) initiative, (Grant BBS/B/14434). Funding to pay the Open Access publication charges for this article was provided by BBSRC.TarO (http://www.compbio.dundee.ac.uk/taro) offers a single point of reference for key bioinformatics analyses relevant to selecting proteins or domains for study by structural biology techniques. The protein sequence is analysed by 17 algorithms and compared to 8 databases. TarO gathers putative homologues, including orthologues, and then obtains predictions of properties for these sequences including crystallisation propensity, protein disorder and post-translational modifications. Analyses are run on a high-performance computing cluster, the results integrated, stored in a database and accessed through a web-based user interface. Output is in tabulated format and in the form of an annotated multiple sequence alignment (MSA) that may be edited interactively in the program Jalview. TarO also simplifies the gathering of additional annotations via the Distributed Annotation System, both from the MSA in Jalview and through links to Dasty2. Routes to other information gateways are included, for example to relevant pages from UniProt, COG and the Conserved Domains Database. Open access to TarO is available from a guest account with private accounts for academic use available on request. Future development of TarO will include further analysis steps and integration with the Protein Information Management System (PIMS), a sister project in the BBSRC Structural Proteomics of Rational Targets initiative.Publisher PDFPeer reviewe

    Dynamical Mass Estimates for Five Young Massive Stellar Clusters

    Full text link
    We have obtained high-dispersion spectra for four massive star clusters in the dwarf irregular galaxies NGC 4214 and NGC 4449, using the HIRES spectrograph on the Keck I telescope. Combining the velocity dispersions of the clusters with structural parameters and photometry from images taken with HST, we estimate mass-to-light ratios and compare these with simple stellar population (SSP) models in order to constrain the stellar mass functions (MFs). For all clusters we find mass-to-light ratios which are similar to or slightly higher than for a Kroupa MF, and thereby rule out any MF which is deficient in low-mass stars compared to a Kroupa-type MF. The four clusters have virial masses ranging between 2.1E5 Msun and 1.5E6 Msun, half-light radii between 3.0 and 5.2 pc, estimated core densities in the range 2E3 Msun pc^-3 to 2E5 Msun pc^-3 and ages between 200 Myr and 800 Myr. We also present new high-dispersion near-infrared spectroscopy for a luminous young (about 15 Myr) cluster in the nearby spiral galaxy NGC 6946, which we have previously observed with HIRES. The new measurements in the infrared agree well with previous estimates of the velocity dispersion, yielding a mass of about 1.7E6 Msun. The properties of the clusters studied here are all consistent with the clusters being young versions of the old globular clusters found around all major galaxies.Comment: 30 pages, including 7 figures and 9 tables. Corrected an error in Table 2: The colors listed for N6946-1447 were not reddening corrected. This also affected Table 9 and Fig 2, 6 and
    corecore