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The static limit of Lorentz-violating electrodynamics in vacuum and in media is investigated.
Features of the general solutions include the need for unconventional boundary conditions and the
mixing of electrostatic and magnetostatic effects. Explicit solutions are provided for some simple cases.
Electromagnetostatics experiments show promise for improving existing sensitivities to parity-odd
coefficients for Lorentz violation in the photon sector.
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I. INTRODUCTION

Since its inception, relativity and its underlying
Lorentz symmetry have been intimately linked to classi-
cal electrodynamics. A century after Einstein, high-
sensitivity experiments based on electromagnetic phe-
nomena remain popular as tests of relativity. At present,
many of these experiments are focused on the ongoing
search for minuscule violations of Lorentz invariance that
might arise in the context of an underlying unified theory
at the Planck-scale [1].

Much of the work involving relativity tests with elec-
trodynamics has focused on the properties of electromag-
netic waves, either in the form of radiation or in resonant
cavities. Modern versions of the Michelson-Morley and
Kennedy-Thorndike experiments using resonant cavities
are among the best laboratory tests for relativity viola-
tions [2–4], while spectropolarimetric studies of cosmo-
logical birefringence currently offer the most sensitive
measures of Lorentz symmetry in any system [5,6].
However, the presence of Lorentz violation in nature
would also affect other aspects of electrodynamics. Our
primary goal in this work is to initiate the study of
Lorentz-violating effects in electrostatics and magneto-
statics. We find a variety of intriguing effects, the more
striking of which may make feasible novel experimental
tests attaining exceptional sensitivities to certain types of
relativity violations.

The analysis in this work is performed within the
framework of the Extension (SME) [7,8], which enlarges
general relativity and the Standard Model (SM) to include
small arbitrary violations of Lorentz and CPT symmetry.
The full lagrangian of the SME can be viewed as an
effective field theory for gravitational and SM fields that
incorporates all terms invariant under observer general
coordinate and local Lorentz transformations. Terms hav-
ing coupling coefficients with Lorentz indices control the
Lorentz violation, and they could emerge as low-energy
remnants of the underlying physics at the Planck-scale
[9]. Experimental tests of the SME performed to date
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include ones with photons [2–6], electrons [10–12], pro-
tons and neutrons [13,14], mesons [15], and muons [16],
while interesting possibilities exists for neutrinos [17]
and the Higgs [18].

In the present work, we limit attention to the sector of
the minimal SME comprising classical Lorentz-violating
electrodynamics in Minkowski spacetime, coupled to an
arbitrary 4-current source. There exists a substantial
theoretical literature discussing the electrodynamics
limit of the SME [19], but the stationary limit remains
unexplored to date. We begin by providing some general
information about this theory, including some aspects
associated with macroscopic media. We then adapt
Green-function techniques to obtain the general solution
for the 4-potential in the electrostatics and magnetostat-
ics limit. Among the associated unconventional effects is
a mixing of electric and magnetic phenomena that is
characteristic of Lorentz violation. For field configura-
tions in Lorentz-violating electromagnetostatics, we
show that the usual Dirichlet or Neumann boundary
conditions are replaced by four natural classes of bound-
ary conditions, a result also reflecting this mixing.

As one application, we obtain the Lorentz-violating 4-
potential due to a stationary point charge. The usual
radial electrostatic field is corrected by small Lorentz-
violating terms, and a small nonzero magnetostatic field
also emerges. Another solution presented here describes a
nonzero scalar potential arising inside a conducting shell
due to a purely magnetostatic source placed within the
shell. This configuration appears well suited as the basis
for a high-sensitivity experiment that would seek certain
nonzero parity-breaking effects in Lorentz-violating
electrodynamics.We discuss some aspects of an idealized
experiment of this type, including the use of rotations
and boosts to extract the signal. Finally, the appendix
resolves some basic issues associated with coordinate
redefinitions in the illustrative case of a classical charged
point particle. Throughout this work, we adopt the con-
ventions of Refs. [5,7].
06-1  2004 The American Physical Society
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II. FRAMEWORK

A. Vacuum Electrodynamics

The lagrangian density for the photon sector of the
minimal SME can be written as

L � �
1

4
F��F

�� �
1

4
�kF�����F

��F��

�
1

2
�kAF��	����A�F�� � j�A�: (1)

In this equation, j� � ��; ~J� is the 4-vector current source
that couples to the electromagnetic 4-potential A�, and
F�� � @�A� � @�A� is the electromagnetic field
strength, which satisfies the homogeneous equations

	����@�F�� � 0 (2)

ensuring the U(1) gauge invariance of the action. The
coefficients �kF����� and �kAF�

� control the Lorentz vio-
lation and are expected to be small.

To focus the analysis, some simplifying assumptions
are adopted in what follows. Since our primary interest
here is electromagnetostatics, we take the current j� to be
conventional. Lorentz violation is then present only in the
photon sector, and the Lorentz force is conventional. This
limit is less restrictive than might first appear, since
suitable coordinate redefinitions can move some of the
Lorentz-violating effects into the matter sector without
changing the physics. An explicit discussion of this issue
for the case of a point charge is given in the appendix.

In the simplest scenarios for Lorentz violation the
coefficients �kF����� and �kAF�

� are constant, so that
energy and momentum are conserved. We adopt this
assumption here. Variation of the lagrangian (1) then
yields the inhomogeneous equations of motion

@�F�
� � �kF�����@

�F�� � �kAF�
�	����F

�� � j� � 0;

(3)

which extend the usual covariant Maxwell equations to
incorporate Lorentz violation. Although outside our
present scope, a treatment allowing nonconservation of
energy-momentum would be of interest.

Some of the analysis of this theory is simplified by
introducing certain convenient linear combinations of the
coefficients �kF����� for Lorentz violation. One useful set
is given by [5]

��DE�
jk � �2�kF�

0j0k; ��HB�
jk �

1

2
	jpq	krs�kF�

pqrs;

��DB�jk � ���HE�kj � �kF�0jpq	kpq:
(4)

As an immediate application of these definitions, the
microscopic Eq. (3) for Lorentz-violating electrodynam-
ics in vacuo with �kAF�� � 0 can be cast in the form of the
Maxwell equations for macroscopic media,
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~r � ~D � �; ~r	 ~H � @0 ~D � ~J;

~r � ~B � 0; ~r	 ~E� @0 ~B � 0;
(5)

by adopting the definitions

~D � �1� �DE� � ~E� �DB � ~B;
~H � �1� �HB� � ~B� �HE � ~E;

(6)

which hold in vacuum.
Another useful set of combinations is [5]

�~�e��
jk �

1

2
��DE � �HB�

jk;

�~�e��jk �
1

2
��DE � �HB�jk �

1

3
�jk��DE�ll;

�~�o��
jk �

1

2
��DB � �HE�

jk;

�~�o��
jk �

1

2
��DB � �HE�

jk; ~�tr �
1

3
��DE�

ll:

(7)

This set is of particular relevance for certain experimen-
tal considerations. For example, if �kAF�� � 0 then bire-
fringence induced by Lorentz violation is controlled
entirely by the ten coefficients �~�e��jk and �~�o��jk.

Experiments constrain part of the space of coefficients
for Lorentz violation [5,6]. The CPT-odd coefficients
�kAF�� are stringently bounded by cosmological observa-
tions and are set to zero throughout this work.
Spectropolarimetry of cosmologically distant sources
limits the ten combinations �~�e��jk and �~�o��

jk to values
below parts in 1032. The remaining nine linearly inde-
pendent components of �kF����� are accessible in labora-
tory experiments [2–4], with the best sensitivity achieved
to date on some components of �~�e��

jk at the level of
about 10�15.

For some of what follows, it is useful to consider the
limit of the theory (1) in which the ten coefficients �~�e��jk

and �~�o��jk are set identically to zero. The pure-photon
part of the lagrangian (1) then can be written as

L � �
1

4
F��F��
 �� �� �  ���kF�

�
���

� ���kF�
�
����: (8)

In this limit, corresponding simplifications occur in the
combinations (4). For example, ��DB�jk becomes an anti-
symmetric matrix.

B. Electrodynamics in Media

The analysis of electrodynamics in ponderable media
could in principle proceed by supplying a four-current
density that describes the microscopic charge and current
distributions in detail. However, as usual, it is more
practical to adopt an averaging process.
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Following standard techniques [21], we average the
exact Maxwell Eqs. (5) with the microscopic charge and
current densities over elemental spatial regions. We in-
troduce the usual notions of polarization ~P and magneti-
zation ~M in terms of averaged molecular electric and
magnetic dipole moments,

~P �

�X
n

~pn�3� ~x� ~xn�
�
; ~M �

�X
n

~mn�3� ~x� ~xn�
�
:

(9)

The braces here denote a smooth spatial average over
many molecules, and the sums are over each type n of
molecule in the given material. For present purposes these
multipoles suffice, and the higher-order microscopic mo-
ments arising from the averaging process can be ignored.

With these definitions, the analogue displacement field
~D and analogue magnetic field ~H appearing in the vac-

uum Eqs. (5) are replaced with the macroscopic displace-
ment field ~Dmatter and macroscopic magnetic field ~Hmatter,
defined by

~Dmatter � �1� �DE� � ~E� �DB � ~B� ~P;
~Hmatter � �1� �HB� � ~B� �HE � ~E� ~M:

(10)

The inhomogeneous Maxwell equations in macroscopic
media in the presence of Lorentz violation then still take
the form (5).

The above formulation shows that, unlike the Lorentz-
symmetric case, a scalar dielectric permittivity and a
scalar magnetic permeability alone may be insufficient
to describe the linear response of a simple material to
applied electric and magnetic fields. Instead, we must
allow for the existence of components of the induced
moments that are orthogonal to the applied field, induced
by atomic-structure modifications from the Lorentz vio-
lation. The nature of the response may vary for different
materials. For homogeneous materials, the unconven-
tional response can be described by the constituency
relations

~Dmatter � �	� �vacuumDE � �matter
DE � � ~E

���vacuumDB � �matter
DB � � ~B;

~Hmatter �

�
1

�
� �vacuumHB � �matter

HB

�
� ~B

���vacuumHE � �matter
HE � � ~E:

(11)

Here, the permittivity 	 and the permeability � are
understood to be those in the absence of Lorentz viola-
tion, the coefficients �vacuum are those discussed in the
previous subsection, and the coefficients �matter contain
the pieces of the induced moments ~P and ~M that are
leading-order in �kF����� and that may be partially or
wholly orthogonal to the applied fields.
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The explicit form of the coefficients �matter depends on
the macroscopic medium. Indeed, unless the matter is
isotropic, their values can depend on the orientation of
the material. Applying the averaging process to an appro-
priate atomic or molecular model based on the SME
could establish their form and represents an interesting
open problem. Note that, in analyzing an experiment, it
may be insufficient merely to replace expressions involv-
ing vacuum coefficients with ones involving the sum of
vacuum and matter coefficients because the boundary
conditions in the presence of matter may induce further
modifications. An explicit example of this is given in
subsection IVB.

In the remainder of the paper, coefficients without
labels are understood to be those in the vacuum. The
relevant matter coefficients are explicitly labeled as
�matter.
III. ELECTROMAGNETOSTATICS

In this section, we consider stationary solutions of the
theory (3). The stationary fields in vacuo satisfy the time-
independent equation of motion

~k j�k�@j@kA�� ~x� � j�� ~x�: (12)

In this equation, the coefficients ~kj�k� are defined by

~k j�k� �  jk �� �  �k �j � 2�kF�
j�k�: (13)

From Eq. (2), the electrostatic and magnetostatic fields
can be written in terms of a 4-potential A� � ��; Aj�
according to ~E � � ~r� and ~B � ~r	 ~A, as usual.

The appearance of both ~E and ~B in ~D and in ~H, which
occurs even in the vacuum (cf. Eq. (6)), means that in the
presence of Lorentz violation a static charge density gen-
erates both an electrostatic and a (suppressed) magneto-
static field, and similarly a steady-state current density
generates both a magnetostatic and a (suppressed) elec-
trostatic field. We show below that the subjects of electro-
statics and magnetostatics, which are distinct in the usual
case, become convoluted in the presence of Lorentz vio-
lation. A satisfactory discussion therefore requires the
simultaneous treatment of both electric and magnetic
phenomena, even in the static limit [20].

A. Green Functions and Boundary Conditions

To obtain a general solution for the potentials � and ~A,
we introduce indexed Green functions G��� ~x; ~x0� solving
Eq. (12) in the Coulomb gauge for a point source,

~k j�k�C @j@kG��� ~x; ~x0� � ����3� ~x� ~x0�; (14)

where ~kj�k�C denotes the Coulomb-gauge restriction of the
coefficients (13). Once a suitable Green theorem incorpo-
rating the differential operator in Eq. (12) is found, the
-3
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formal solution of Eq. (12) can be constructed using
standard methods [21,22].

The relevant Green theorem can be given in terms of
arbitrary functions X�� ~x� and Y�� ~x�. We obtain

Z
V
d3x�X�~k

j�k�@j@kY� � Y�~k
j�k�@j@kX��

� �
Z
S
d2Sn̂j�Y�~k

j�k�@kX� � X�~k
j�k�@kY��; (15)

where n̂j is the outward normal of the surface S bounding
the region of interest.

Using Eq. (12) in Coulomb gauge and Eq. (14) in
Eq. (15), we find that the general solution for the 4-
potential A� in the Coulomb gauge is

A�� ~x� �
Z
V
d3x0G��� ~x

0; ~x�j�� ~x0�

�
Z
S
d2S0n̂0j
G��� ~x

0; ~x�~kj�k�@0kA�� ~x
0�

�A�� ~x0�~k
j�k�@0kG��� ~x

0; ~x��: (16)

The first term contains the contribution from the sources
within the volume V, while the remainder represents the
effects of the bounding surface S.

Consider next the issue of appropriate boundary con-
ditions. Inspection of Eq. (16) reveals that there are four
natural classes of boundary condition that specify a so-
lution. We summarize these in Table I.

Class I boundary conditions are expressed entirely in
terms of the potentials, being specified by � � A0 and the
tangential component of ~A. This class is the only one for
which the explicit Green function is independent of the
area of the surface. It is most closely analogous to
Dirichlet boundary conditions in conventional electro-
statics. Class II boundary conditions involve � and the
tangential component of ~H. The explicit boundary con-
dition on the corresponding Green function incorporates
a factor of the inverse surface area on the right-hand side,
generating a term in the solution involving the average
contribution of the potential over the bounding surface. A
similar feature occurs in conventional electrostatics for
Neumann boundary conditions. Class III boundary con-
ditions involve the normal component of ~D and the tan-
gential component of ~A, while class IV boundary
TABLE I. Natural classes of boundary conditions.

Fields on S Green function on S

I �; n̂	 ~A 	jkln̂Gl� � 0; G0� � 0

II �; n̂	 ~H n̂j~kjlk�@kG�� � 1
S �

l
�; G0� � 0

III n̂� ~D; n̂	 ~A n̂j~kj0k�@kG�� � 1
S �

0
�; 	

jkln̂jGl� � 0

IV n̂ � ~D; n̂	 ~H n̂j~kj�k�@kG�� � 1
S �

�
�
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conditions involve the normal component of ~D and the
tangential component of ~H.

The uniqueness of the solutions for the fields ~E and ~B
associated to each of the four classes above can be shown
by using the general solution (16) to examine the differ-
ence �A� � A1

� � A2
� of two solutions obtained for a

specified choice of boundary conditions. Direct calcula-
tion verifies that �A� is either a constant or zero. It
follows that the electric and magnetic fields from both
solutions are identical. This result can also be verified
without the use of Green functions by considering the first
Green identity and the field boundary conditions.

We remark in passing that reciprocity relations for the
Green functions can be obtained by combining the Green
theorem (15) with the above results. For example, pro-
vided the bounding surface is at infinity, the Green func-
tions satisfy G��� ~x; ~x0� � G��� ~x

0; ~x�.
Note also that a given problem in Lorentz-violating

electromagnetostatics effectively requires the simulta-
neous solution of all four potentials A� from the corre-
sponding boundary conditions. This differs from the
usual case, in which electrostatics and magnetostatics
can be regarded as distinct subjects, even though
Eq. (16) reduces to standard results in the limit of zero kF.

The solution (16) can be generalized to include regions
of matter. In such cases the modified Eqs. (11) apply. For
simplicity, we limit attention to cases where the material
is isotropic and the matter coefficients are constant every-
where inside. The equations of motion for the electro-
magnetic field are then

~k j�k�matter@j@kA�� ~x� � j�� ~x�; (17)

where the coefficients ~kj�k�matter are given by

~kj�k�matter � 	 jk �0 �0 �
1

�
 jk �l �l �

1

�
 j� k�

� 2�kF�
j�k�
vacuum � 2�kF�

j�k�
matter: (18)

In this equation, the coefficients �kF�matter are related to
the quantities �matter in Eq. (11) by definitions of the form
(4). Assuming that �kF�matter has the symmetries of
�kF�vacuum and that the volume V is filled with matter to
the surface S, the solution (16) and the above formalism
can be applied directly by replacing ~kj�k�vacuum ! ~kj�k�matter.

B. Conductors

The presence of conducting surfaces influences the
determination of appropriate boundary conditions. In
conventional electrostatics, the potential � is constant
on a conductor in equilibrium. However, it is unclear a
priori whether this result holds in the presence of Lorentz
violation, when the potential � � �� ��J becomes the
sum of a part �� arising from the charge density and a
(suppressed) part �J arising from the current density.
-4



LORENTZ-VIOLATING ELECTROSTATICS AND. . . PHYSICAL REVIEW D 70 076006
To investigate this issue, consider one or more conduc-
tors positioned in a region that may also contain static
charges and steady-state currents. Assuming the region
contains matter with the general constituency relations
(11), the electromagnetic energy density u can be written

u �
1

2

 ~E � �	� �vacuumDE � �matter

DE � � ~E

� ~B � �
1

�
� �vacuumHB � �matter

HB � � ~B�; (19)

where for simplicity �matter and �vacuum are taken to have
the same symmetries. The total electromagnetic energyU
of the configuration is the integral of Eq. (19) over all
space, including the volume occupied by the conductors.
If the fields fall off sufficiently rapidly at the boundary of
the region, the total energy can alternatively be expressed
as an integral over all space involving the potentials �

and ~A, the charge density �, and the current density ~J.
In equilibrium, the free charge on the conductor is

arranged to minimize U. Consider a variation �� of the
charge distribution on the conductors away from the
equilibrium configuration. With some manipulation of
the above expressions and suitable use of the modified
Maxwell equations, the corresponding change �U in the
electromagnetic energy can be written as

�U�U�������U���

�
Z
V
d3x
�����

1

2
� ~E � �	��vacuumDE ��matter

DE � �� ~E

�
1

2
� ~B �

�
1

�
��vacuumHB ��matter

HB � �� ~B
�
: (20)

The first term represents a first-order variation, so the
energy is extremized when it vanishes. This condition is
satisfied for constant �� in the conductors because the
variation �� integrates to zero. The remaining terms
represent the second-order variation, and the energy is
minimized when they are positive. This condition is also
satisfied because �DE and �HB are small. The potential ��

from the charge density is thus expected to be constant in
a conductor in equilibrium. This result generalizes the
Thomson theorem of conventional electrostatics, and it
establishes a partial condition on �.

The energy-based variational approach of Eq. (20)
gives no information about the portion �J of the potential
due to the current density. This is because the contribution
of �J to � in the expression for the energy cancels
against the portion ~A� of ~A arising from the charge
density. Instead, a condition on �J can be obtained by
considering the rate of work done by the fields in a fixed
volume of conductor.

Since the Lorentz force is conventional, the power P in
the volume V of conductor is given by
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P � �
Z
V
d3x ~J � ~E: (21)

Using ~E � � ~r�, the steady-state assumption ~r � ~J � 0,
and the vanishing of the normal component of the current
at the surface of the conductor reveals that P vanishes.
Substituting the steady-state Maxwell equation ~r	
~Hmatter � ~J in Eq. (21) and using ~r	 ~E � 0 then gives

the condition Z
S
d2x ~E � n̂	 ~Hmatter � 0 (22)

on the surface of the conductor. This is the statement that
there is no net outward flow of field momentum: the
integral of the normal component of the generalized
Poynting vector ~S � ~E	 ~Hmatter vanishes over the sur-
face. The point of interest is that Eq. (22) is satisfied for
vanishing tangential electric field at the surface, which in
turn implies that �J is constant. The condition (22) is
therefore consistent with requiring that the total potential
� is constant on the surface of a conductor.

Note that Eq. (22) could in principle also be satisfied for
more general field configurations. Suppose that for linear
conductors we introduce a generalized Ohm law of the
form

~J � �/� ~/E� � ~E� ~/B � ~B; (23)

where ~/E, ~/B involve coefficients for Lorentz violation. It
can be shown using the above assumptions that only the
final term in this expression could produce leading-order
deviations from constant � in equilibrium. A term of this
type might conceivably be generated through Lorentz
violation under suitable circumstances. Although outside
our present scope, it would be of interest to investigate
this issue within specific models of conductors.

As an aside, we remark that the above results can be
used to show that certain precision Cavendish-type ex-
periments searching for a nonzero photon mass � are
insensitive to Lorentz violation. For example, the value of
� in the Proca electrostatics equation [23] � ~r2

��2�� �
0 was bounded by Williams et al. [24]. This experiment
basically sought a nonzero potential difference inside a
metal shell held at fixed potential. However, the result that
fixed potential corresponds to a conductor in equilibrium
implies that the conventional zeroth-order electric field
vanishes inside the shell. Assuming there is no zeroth-
order magnetic field inside, it then follows that the equa-
tion for the modified potential inside the shell reduces to
the usual Laplace equation at leading order in Lorentz
violation, despite the nonzero kF. Fixing the potential
across the shell thus also fixes it inside the shell, and so
the experiment is insensitive to kF. Note that, in contrast,
the fields outside a shell held at constant potential are
indeed modified because the conventional exterior elec-
tric field is nonzero.
-5
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IV. APPLICATIONS

A. Point Charge

As an application of the general solution using the
Green function (16), consider the fields for the special
case of boundary conditions at infinity. The potentials can
then be obtained from

A�� ~x� �
Z
d3x0G��� ~x; ~x

0�j�� ~x0�: (24)

Imposing the Coulomb gauge, this integral can be solved
at leading order in �kF����� for an arbitrary source j�,
using the symmetric Green function

G��� ~x� ~x0� �
 �� � �kF��j�j
40j ~x� ~x0j

�
�kF��j�k� ~x� ~x0�j� ~x� ~x0�k

40j ~x� ~x0j3
: (25)

This Green function can be extracted from the differen-
tial Eqs. (12) and (14) by Fourier decomposition in mo-
mentum space.

As an example, consider a classical point charge as the
source. The action for this case is discussed in the appen-
dix, along with some of the subtleties associated with the
freedom to redefine the choice of coordinates. In the rest
frame of the charge, taken to be located at the origin, the
source 4-current is j�� ~x� � �0

�q��3�� ~x�. Substituting this
source and the Green function (25) into the solution (24)
and performing the integral, we find the potentials at
leading order in Lorentz violation are given by

�� ~x� �
q

40j ~xj

1� �kF�0j0kx̂jx̂k�;

Aj� ~x� �
q

40j ~xj

�kF�0kjk � �kF�jk0lx̂kx̂l�:

(26)

We have defined the charge q so that the first term in �
has the usual normalization. The solution for � agrees
with that previously obtained in Ref. [5]. As discussed
above, the appearance of a nonzero vector potential from
a point charge at rest is to be expected and can be traced
to the mixing of electrostatics and magnetostatics in the
presence of Lorentz violation.

The electromagnetostatic fields due to the point charge
at rest can be derived directly from the results (26). We
find

Ej� ~x� �
q

40j ~xj2

x̂j � 2�kF�

0j0kx̂k

�3�kF�
0k0lx̂jx̂kx̂l�;

Bj� ~x� �
q

40j ~xj2
	jkl
�kF�

0mkmx̂l

���kF�
0kml � �kF�

0mkl�x̂m

�3�kF�
0mnkx̂mx̂nx̂l�:

(27)
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These fields display an inverse-square behavior modu-
lated by anisotropic Lorentz-violating parts. Note that,
in the no-birefringence limit with the ten coefficients
�~�e��jk and �~�o��jk set to zero, the magnetic field can
be written in the more compact form

~B �
q
40

~�	 x̂

j ~xj2
; (28)

where �j � �kF�
0kjk.

B. Magnet Inside Conducting Shell

We consider next a more involved example, consisting
of a localized magnetic source surrounded by a grounded
conducting shell. This situation is designed to exploit the
mixing between electrostatic and magnetostatic effects in
a manner that has direct application to laboratory
searches for Lorentz violation, as is discussed in the
next subsection.

For definiteness, the magnetic source is taken to be a
sphere of radius a and uniform magnetization ~M. At
zeroth order in Lorentz violation, the associated magnetic
field is uniform inside the sphere and is dipolar outside,
with dipole moment ~m � 40a3 ~M=3. The grounded con-
ductor is taken to be a concentric spherical shell of radius
R. We seek the solution for the scalar potential � in the
region a < r < R, where r is the radial coordinate from
the center of the sphere.We first solve the problem treating
the source as an idealized bound current density, and then
present the modifications induced by the magnet permit-
tivity and matter coefficients for Lorentz violation.

The idealized solution can be found using Eq. (16) with
class I boundary conditions,

�� ~x� �
Z
V
d3x0Gj0� ~x0; ~x�jj� ~x0�

�
Z
S
d2S0n̂0jA�� ~x0�~k

j�k�@0kG�0� ~x
0; ~x�: (29)

The charge density � vanishes by assumption, so the
source consists of the bound current density ~J � ~r	 ~M
due to the magnetization of the sphere. At leading order in
the coefficients for Lorentz violation, Eq. (29) can be
manipulated into the form

��1�� ~x� � �
Z
V
d3x0G�0�� ~x; ~x0� ~r0

� �DB � ~B
�0�� ~x0�: (30)

The labels �0� and �1� indicate zeroth- and first-order
contributions in the coefficients for Lorentz violation.

The structure of Eq. (30) implies that the potential can
be viewed as arising from an effective charge density
obtained from the derivatives of the conventional mag-
netic field. The proposed application of this problem lies
in the laboratory, so in evaluating Eq. (30) it is an ex-
cellent approximation to take �DB � ~�o� as antisymmet-
ric, following the discussion in Section IIA. For the
-6
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zeroth-order Green function G�0�� ~x; ~x0�, we can take the
conventional Dirichlet Green function for a spherical
grounded shell of radius R. Performing the integral, we
find that the Lorentz-violating potential � is

�� ~x� �
r̂ � ~�o� � ~m

40

�
1

r2
�
r

R3

�
: (31)

This solution is valid for a < r < R.
The electrostatic and magnetostatic fields can be ob-

tained by direct calculation. The electrostatic field in the
region a < r < R is given by

Ej� ~x� �
�~�o��

jkmk

40

�
1

R3 �
1

r3

�
�

3�~�o��
klr̂jr̂kml

40r3
: (32)

Note that the limit R! 1 corresponds to a dipole elec-
trostatic field with dipole moment pj � �~�o��

jkmk. The
magnetostatic field is given by

Bj� ~x� �
3r̂j�r̂ � ~m� �mj

40r3
(33)

at zeroth-order.
The solution (31) becomes modified in the more real-

istic scenario with the magnet consisting of matter obey-
ing the constituency relations (11). To obtain the modified
result for the case of an isotropic material with constant
matter coefficients, note that the leading order potential
��1� satisfies the Laplace equation everywhere except at
r � a and that the normal component of the electric field
satisfies the boundary condition ��	E�1�

n � � /eff , where
the effective surface charge /eff is determined by the
discontinuity of the magnetic field at r � a. The problem
is then formally identical to a conventional electrostatics
problem, and standard techniques [21] apply. We find that
the solution (31) is adjusted by the replacements

~m!
3 ~m


2� 	� �1� 	�a3=R3�
;

~�o� ! ~�vacuumo� �
2

3
~�matter
o� ;

(34)

where the dielectric constant 	 is taken to be a constant
scalar.

C. Experiment

Among the combinations of coefficients listed in
Eq. (7), experiments to date are least sensitive to ~�o�
and ~�tr. In the case of ~�o�, this reduced sensitivity can be
attributed to the parity-odd nature of the corresponding
Lorentz-violating effects, while high-sensitivity to ~�tr is
difficult to attain because it is a scalar. The configuration
discussed in the previous subsection is constructed to be
directly sensitive to parity-odd effects, as is reflected in
the dominance of the combination ~�o� in the solution
(31).
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In this section, we consider an idealized experiment
that could attain high sensitivity to the three independent
components of ~�o� and indirectly also to ~�tr. The idea is
to measure the potential (31) inside the spherical cavity.
For a conservative estimate of the sensitivity that might in
principle be attainable in the ideal case, suppose for
simplicity the spherical source is a hard ferromagnet
with strength 10�1 T near its surface, and suppose the
potential is measured with a voltmeter of nV sensitivity.
Then, a null measurement in principle could achieve a
bound of ~�o� & 10�15, which would represent an im-
provement of 4 orders of magnitude over best existing
sensitivities [3,4]. Using SQUID-based devices, this
might in principle be improved by another 4 orders of
magnitude, suggesting Planck-scale sensitivity to this
type of Lorentz violation is attainable in the laboratory.

The basic setup for the experiment would be to insert
one or more voltage probes, referenced to each other or to
ground, into the inner region a < r < R. The solution (31)
shows that the maximum voltage sensitivity occurs when
the probe is close to the magnetic source. The conducting
shell surrounding the magnet serves to shield the appara-
tus in the interior from external electric fields.

In the presence of Lorentz violation, rotating the entire
apparatus produces a signal with a definite time variation,
which may increase sensitivity and reduce systematics.
The expected time variation of the signal can be obtained
by referring the laboratory coefficients to the standard
Sun-centered celestial-equatorial frame [5], which is an
approximately inertial frame appropriate for reporting
results of arbitrary tests of Lorentz violation. By virtue
of the orbital speed j ~�j ’ 10�4 of the Earth in this frame,
a measurement of the three components of ~�o� in the
laboratory achieving a sensitivity S then translates in the
Sun-centered frame into a sensitivity of order S to the
three components of ~�o� and a sensitivity of order 104S to
~�tr.

To illustrate these points, consider the case of fixed
probes recording a potential difference �� between two
points in the inner region. We seek to characterize the
expected time dependence of the signal due to the rotation
of the Earth and its orbital motion about the Sun. Other
rotations, such as those induced by turntables in the
laboratory, can also be treated by these methods.

In a frame fixed to the laboratory and within the
idealized approximations of the previous subsection,
�� can be written as

�� � �MDB�
jk
lab��DB�

jk
lab � �MDB�

jk
lab�~�o��

jk
lab; (35)

where �MDB�lab is an experiment-specific constant ma-
trix that is determined for the chosen probe configuration
by applying Eq. (31). The time dependence of the signal
�� can be exhibited by transforming the laboratory-
frame combinations �~�o��

jk
lab to the standard Sun-centered

frame. Following Ref. [5], with upper-case letters denot-
-7
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ing Sun-centered coordinates, we find

�~�o��
jk
lab � TjkJK0 ��DB�

JK

��TkjJK1 � TjkJK1 ���DE�
JK

� TjkJK0 �~�o��JK � 2TkjJJ1 ~�tr

��TkjJK1 � TjkJK1 ��~�e��JK; (36)

where TjkJK0 � RjJRkK and TjkJK1 � RjPRkJ	KPQ�Q are
tensors containing the time dependence induced by the
action of the rotations RjJ and boost �J. Appendix C of
Ref. [5] provides explicit expressions for these quantities
and fixes the coordinate choices for the laboratory and
Sun-centered frames.

In performing an experiment along the above lines,
some attention should be given to possible unconventional
effects induced by the apparatus, in addition to the usual
variety of systematic effects such as surface patch
charges. For example, certain voltmeters are based on
devices that measure currents. The currents are deter-
mined by the dipole moment of a coiled wire, which is
measured using an internal magnetic field to determine
the torque. The presence of Lorentz violation implies this
internal magnetic field could generate a corresponding
electric field that could interfere with the signal from
the magnetized sphere. In practice, devices of this type
could still be used under appropriate conditions, such as
an internal magnetic field significantly weaker than that
of the magnetized sphere. As another caution, inspection
of the solution (31) shows that if the magnetic material
chosen has a large dielectric constant then the signal
would be suppressed, so a magnetic source of small
dielectric constant is preferable.

Related experiments that could provide interesting sen-
sitivity to ~�o� and ~�tr may also be possible. For example,
a kind of converse of the above experiment could involve
attempting to measure a magnetic field created from a
source of charge, in analogy with Eq. (27). Modern
SQUID measurements of the magnetic field at the level
of 10�14 T from a large vacuum electric-field source of
1012 V=m could in principle yield comparable bounds to
those above.

Another approach could be to take advantage of the
strong electric fields in the vicinity of an atomic nucleus.
Atomic spectroscopy might then reveal the small accom-
panying Lorentz-violating magnetic field through observ-
able frequency shifts. For this case, we can adapt some
existing theoretical and experimental studies of Lorentz-
violating effects in atoms [13]. Suppose as before the ten
birefringence-inducing coefficients in the photon sector
are negligible. A coordinate transformation of the type
described in the appendix can then be used to move the
remaining nine coefficients in the photon sector to the
matter sector, where they appear as symmetric compo-
nents of a c-type coefficient for Lorentz violation, c�� �
076006
�kF�
�
���. For example, the parity-odd coefficients

�~�o��jk of interest above are contained in the three sym-
metric combinations �c0j � cj0�. To date no clock-
comparison experiment has measured parity-odd c-type
coefficients, but future laboratory or space-based experi-
ments could achieve Planck-scale sensitivities [14] by
incorporating into the analysis the boost effects arising
from the orbital motion of the Earth or a satellite.
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APPENDIX A: CLASSICAL POINT CHARGE

This appendix discusses some issues associated with
the choice of coordinate system in the presence of Lorentz
violation [25]. For definiteness, we consider the theory of
a single classical charged particle in Lorentz-violating
electrodynamics.

The action is taken to be

S � S0 � Sint � Sem; (A1)

where S0 is the action for the free classical particle, Sint
contains the interaction, and Sem is the action containing
the pure-photon part of the lagrangian (1). The free action
S0 is

S0 � �m
Z
d�

���������������������������
dx�

d�
dx�

d�
 ��

s
; (A2)

and the interaction is assumed conventional,

Sint � �
Z
d4xj�A� � �q

Z
d�A��x

��
dx�

d�
: (A3)

As usual, the equations of motion for the charged particle
are obtained by varying with respect to x���� and rep-
arametrizing with the proper time d82 �  ��dx�dx�.
This shows that the conventional Lorentz- force law,

m
d2x�

d82
� qF��

dx�

d8
; (A4)

holds despite the Lorentz violation in the photon sector.
A suitable coordinate transformation can move nine of

the 19 coefficients for Lorentz violation from the photon
sector to the matter sector, while leaving unaffected the
form j�A� of the interaction. For simplicity in what
follows, we keep only the relevant nine coefficients,
which corresponds to restricting the pure-photon lagran-
gian to Eq. (8), and we work at leading order in
the coefficients �kF����� for Lorentz violation. The coor-
dinate transformation is x� ! x�

0
� x� � 1

2 �kF�
��

��x�.
-8



LORENTZ-VIOLATING ELECTROSTATICS AND. . . PHYSICAL REVIEW D 70 076006
Under this transformation, the total action becomes

S �
Z
d4x0

�
�
1

4
F�0�0F�

0�0 � j�
0
A�0

�

�m
Z
d�

���������������������������������������������������������������
dx�

0

d�
dx�

0

d�

 �0�0 � �kF�

�0

�0�0�0 �

s
: (A5)

In the new coordinates, the electromagnetic field has
conventional kinetic and interaction terms and thus con-
ventional dynamics. However, the charged particle now
has Lorentz-violating dynamics controlled by the coef-
ficients �kF��

0

�0�0�0 . These are the classical analogue of
the symmetric traceless coefficients c�0�0 in the matter
sector of Lorentz-violating quantum electrodynamics.
The equations of motion for the classical charged particle
are now expressed in terms of the proper time d82 �


 �0�0 � �kF��
0

�0�0�0 �dx
�0
dx�

0
, and they represent a modi-

fied Lorentz force,

m
d2x�

0

d82
�m�kF��

0�0

�0�0

d2x�
0

d82
� qF�

0

�0

dx�
0

d8
: (A6)

Phenomenological analysis could proceed with either
of the two actions (A1) or (A5), or indeed with various
other actions obtained by coordinate transformations of
Eq. (A1). The physically observable effects are always
equivalent, but care is required in matching calculations
to physical situations. For example, it might seem tempt-
ing to conclude that the action (A1) cannot describe
physical Lorentz violation involving the nine coefficients
considered above because there exists a coordinate system
with conventional photon dynamics. However, in practice
charged particles are used to measure properties of the
electromagnetic field, and so in the new coordinate sys-
tem the physical Lorentz violation appears because ob-
servables are affected by the modified force law (A6). The
description of matter can also be affected. For example,
in the new coordinates apparent crystalline deformations
induce frequency changes in resonant cavities corre-
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sponding to those arising from photon-sector effects in
the original coordinates [5,12]. Determining which set of
coordinates is most appropriate for a given experiment
involves establishing the underlying choice of standard
rods and clocks to which the experimental observables are
ultimately being referenced.

Comparisons between results obtained with the two
different actions must include the appropriate coordinate
transformation. For example, observers using the two
different actions (A1) and (A5) disagree on the force
between two charged particles. Consider an observer for
whom two point charges q and ~q are at rest and separated
by a distance ~x. If the observer uses the action (A1), then
the force between the two point charges is obtained using
the Lorentz-violating result (26) together with the con-
ventional Lorentz force (A4). At leading order, the force
on charge ~q due to charge q is then

m
du0

d8
� 0; m

duj

d8
� ~qEj� ~x�; (A7)

where Ej� ~x� is the electric field (27) of the charge q. A
second observer using the action (A5) finds instead a
force given by applying the corresponding coordinate
transformation to Eq. (A7),

m
du0

0

d8
�

�q~q

80j ~x0j2
�kF�0j

0l0j0 x̂l
0
;

m
duj

0

d8
�

q~q

40j ~x0j2



x̂j

0
� 2�kF�0j

00k0 x̂k
0
�

1

2
�kF�0

0l0j0l0~x0
0

�
3

2
�kF�

00l0k0l0 x̂j
0
x̂k

0
~x0

0

�
; (A8)

where ~x0
0
� x0

0
=j ~x0j. Note that the charges are moving in

this second frame. The result (A8) can be derived directly
from the modified Lorentz force (A6) with conventional
photon dynamics, provided care is taken into account for
the motion of the charges.
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Rev. Lett. 80, 1818 (1998); Phys. Rev. D 61, 016002
(2000); Phys. Rev. D 64, 076001 (2001).

[16] V.W. Hughes et al., Phys. Rev. Lett. 87, 111804 (2001); R.
Bluhm et al., Phys. Rev. Lett. 84, 1098 (2000).

[17] S. Coleman and S. L. Glashow, Phys. Rev. D 59, 116008
(1999); V. Barger, S. Pakvasa, T. Weiler, and K. Whisnant,
Phys. Rev. Lett. 85, 5055 (2000); J. N. Bahcall,V. Barger,
and D. Marfatia, Phys. Lett. B 534, 114 (2002); I.
Mocioiu and M. Pospelov, Phys. Lett. B 534, 114
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