891 research outputs found

    Ab initio modelling of two-dimensional semiconductors

    Get PDF
    We study excited-state phenomena in a variety of semiconductor systems, with use of the variational and diffusion quantum Monte Carlo (QMC) methods. Firstly, we consider the formation of charge-carrier complexes in the Mott-Wannier model, for systems of restricted geometrical freedom (the coupled quantum well bilayer, and the quantum ring). We find in such systems that geometrical constraints lead to the characteristic formation of certain charge-carrier complexes, and highlight how such effects are of relevance to the interpretation of recent experiments. Secondly, we illuminate a key difference between two-dimensional systems formed from geometrical restriction, and those which are truly two-dimensional in extent, by introduction of the Keldysh interaction. We then study the formation of charge-carrier complexes in two-dimensional semiconductors and their heterostructures in the so-called Mott-Wannier-Keldysh model, deriving appropriate extensions of the Keldysh interaction as necessary. Thirdly, we undertake a comprehensive survey of the use of continuum QMC methods to evaluate excited-state properties in a truly ab initio fashion, establishing best-practices, and presenting energy gap calculations for several real materials. This includes the first published QMC calculation of the electronic energy gaps of a two-dimensional semiconductor, phosphorene. Finally, we propose an extension of the Keldysh interaction which permits the study of continuum phases, the so-called ``periodic Keldysh interaction'', and use it to probe the possible Wigner crystallisation of electrons in a weakly-doped two-dimensional semiconductor

    Method for defect free keyhole plasma arc welding

    Get PDF
    A plasma arc welding process for welding metal of increased thickness with one pass includes operating the plasma arc welding apparatus at a selected plasma gas flow rate, travel speed and arc current, to form a weld having a penetration ratio to weld height to weld width, and maintaining the penetration ratio at less than 0.74. Parameters for the plasma gas flow rate, travel speed and arc current are adjusted to a steady state condition during a start up period and maintained during the steady state condition to complete a weld. During a terminal stopping period, the travel speed is stopped and instantaneously replaced by filler wire which adds material to fill the keyhole that had been formed by the welding process. Parameters are subsequently adjusted during the stopping period to terminate the weld in a sound manner

    Stability of trions in coupled quantum wells modeled by two-dimensional bilayers

    Get PDF
    We report variational and diffusion quantum Monte Carlo calculations of the binding energies of isolated indirect trions and biexcitons in ideal two-dimensional bilayer systems within the effective-mass approximation, and with a Coulomb 1 / r interaction between charge carriers. The critical layer separation at which trions become unbound has been studied for various electron-hole mass ratios, and found to be over an order of magnitude larger than the critical layer separation for biexcitons

    Binding energies of excitonic complexes in type-II quantum rings from diffusion quantum Monte Carlo calculations

    Get PDF
    Excitonic complexes in type-II quantum-ring heterostructures may be considered as artificial atoms due to the confinement of only one charge-carrier type in an artificial nucleus. Binding energies of excitons, trions, and biexcitons in these nanostructures are then effectively ionization energies of these artificial atoms. The binding energies reported here are calculated within the effective-mass approximation using the diffusion quantum Monte Carlo method and realistic geometries for gallium antimonide rings in gallium arsenide. The electrons form a halo outside the ring, with very little charge density inside the central cavity of the ring. The de-excitonization and binding energies of the complexes are relatively independent of the precise shape of the ring

    Quantum Monte Carlo calculations of energy gaps from first principles

    Get PDF
    We review the use of continuum quantum Monte Carlo (QMC) methods for the calculation of energy gaps from first principles, and present a broad set of excited-state calculations carried out with the variational and fixed-node diffusion QMC methods on atoms, molecules, and solids. We propose a finite-size-error correction scheme for bulk energy gaps calculated in finite cells subject to periodic boundary conditions. We show that finite-size effects are qualitatively different in two-dimensional materials, demonstrating the effect in a QMC calculation of the band gap and exciton binding energy of monolayer phosphorene. We investigate the fixed-node errors in diffusion Monte Carlo gaps evaluated with Slater-Jastrow trial wave functions by examining the effects of backflow transformations, and also by considering the formation of restricted multideterminant expansions for excited-state wave functions. For several molecules, we examine the importance of structural relaxation in the excited state in determining excited-state energies. We study the feasibility of using variational Monte Carlo with backflow correlations to obtain accurate excited-state energies at reduced computational cost, finding that this approach can be valid. We find that diffusion Monte Carlo gap calculations can be performed with much larger time steps than are typically required to converge the total energy, at significantly diminished computational expense, but that in order to alleviate fixed-node errors in calculations on solids the inclusion of backflow correlations is sometimes necessary

    Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system

    Get PDF
    © 2020 The Authors Magnetoencephalography (MEG) is a powerful technique for functional neuroimaging, offering a non-invasive window on brain electrophysiology. MEG systems have traditionally been based on cryogenic sensors which detect the small extracranial magnetic fields generated by synchronised current in neuronal assemblies, however, such systems have fundamental limitations. In recent years, non-cryogenic quantum-enabled sensors, called optically-pumped magnetometers (OPMs), in combination with novel techniques for accurate background magnetic field control, have promised to lift those restrictions offering an adaptable, motion-robust MEG system, with improved data quality, at reduced cost. However, OPM-MEG remains a nascent technology, and whilst viable systems exist, most employ small numbers of sensors sited above targeted brain regions. Here, building on previous work, we construct a wearable OPM-MEG system with ‘whole-head’ coverage based upon commercially available OPMs, and test its capabilities to measure alpha, beta and gamma oscillations. We design two methods for OPM mounting; a flexible (EEG-like) cap and rigid (additively-manufactured) helmet. Whilst both designs allow for high quality data to be collected, we argue that the rigid helmet offers a more robust option with significant advantages for reconstruction of field data into 3D images of changes in neuronal current. Using repeat measurements in two participants, we show signal detection for our device to be highly robust. Moreover, via application of source-space modelling, we show that, despite having 5 times fewer sensors, our system exhibits comparable performance to an established cryogenic MEG device. While significant challenges still remain, these developments provide further evidence that OPM-MEG is likely to facilitate a step change for functional neuroimaging

    The Strayed Reveller, No. 7

    Get PDF
    The seventh issue of The Strayed Reveller.https://scholarworks.sfasu.edu/reveller/1006/thumbnail.jp

    Effect of aerobic exercise on amyloid accumulation in preclinical Alzheimer’s: A 1-year randomized controlled trial

    Get PDF
    Background Our goal was to investigate the role of physical exercise to protect brain health as we age, including the potential to mitigate Alzheimer’s-related pathology. We assessed the effect of 52 weeks of a supervised aerobic exercise program on amyloid accumulation, cognitive performance, and brain volume in cognitively normal older adults with elevated and sub-threshold levels of cerebral amyloid as measured by amyloid PET imaging. Methods and findings This 52-week randomized controlled trial compared the effects of 150 minutes per week of aerobic exercise vs. education control intervention. A total of 117 underactive older adults (mean age 72.9 [7.7]) without evidence of cognitive impairment, with elevated (n = 79) or subthreshold (n = 38) levels of cerebral amyloid were randomized, and 110 participants completed the study. Exercise was conducted with supervision and monitoring by trained exercise specialists. We conducted 18F-AV45 PET imaging of cerebral amyloid and anatomical MRI for whole brain and hippocampal volume at baseline and Week 52 follow-up to index brain health. Neuropsychological tests were conducted at baseline, Week 26, and Week 52 to assess executive function, verbal memory, and visuospatial cognitive domains. Cardiorespiratory fitness testing was performed at baseline and Week 52 to assess response to exercise. The aerobic exercise group significantly improved cardiorespiratory fitness (11% vs. 1% in the control group) but there were no differences in change measures of amyloid, brain volume, or cognitive performance compared to control. Conclusions Aerobic exercise was not associated with reduced amyloid accumulation in cognitively normal older adults with cerebral amyloid. In spite of strong systemic cardiorespiratory effects of the intervention, the observed lack of cognitive or brain structure benefits suggests brain benefits of exercise reported in other studies are likely to be related to non-amyloid effects

    Representations of sport in the revolutionary socialist press in Britain, 1988–2012

    Get PDF
    This paper considers how sport presents a dualism to those on the far left of the political spectrum. A long-standing, passionate debate has existed on the contradictory role played by sport, polarised between those who reject it as a bourgeois capitalist plague and those who argue for its reclamation and reformation. A case study is offered of a political party that has consistently used revolutionary Marxism as the basis for its activity and how this party, the largest in Britain, addresses sport in its publications. The study draws on empirical data to illustrate this debate by reporting findings from three socialist publications. When sport did feature it was often in relation to high profile sporting events with a critical tone adopted and typically focused on issues of commodification, exploitation and alienation of athletes and supporters. However, readers’ letters, printed in the same publications, revealed how this interpretation was not universally accepted, thus illustrating the contradictory nature of sport for those on the far left
    corecore