426 research outputs found

    Supplemental Choline During the Periweaning Period Protects Against Trace Conditioning Impairments Attributable to Post-Training Ethanol Exposure in Adolescent Rats

    Get PDF
    Supplemental choline during early stages of development can result in long-lasting improvements to memory function. In addition, pre- or postnatal choline has been shown to be protective against some of the adverse effects of early alcohol exposure. The present experiment examined whether supplemental choline given to rats would protect against the effects of posttraining alcohol administration on trace fear conditioning. Posttraining alcohol exposure in adolescent rats results in poor performance in this hippocampus-dependent task, although delay conditioning is unaffected. Here, rats were given an s.c. injection of either saline or choline chloride daily on postnatal days (PD) 15-26. On PD 30 subjects were trained in a trace fear conditioning procedure. For the next 3 days animals were administered 2.5 g/kg ethanol or water control, and conditional stimulus (CS)-elicited freezing was measured on PD 34. Results indicated that posttraining alcohol disrupted the expression of trace conditioning and that supplemental choline on PD 15-26 was protective against this effect. That is, choline-treated animals subsequently given posttraining ethanol performed as well as animals not given ethanol. These results indicate that supplemental choline given during the periweaning period protects against ethanol-induced impairments in a hippocampus-dependent learning task. Findings contribute to the growing literature showing improvements in learning and memory in subjects given extra dietary choline during critical periods of brain development

    Adolescent and adult rats differ in the amnesic effects of acute ethanol in two hippocampus-dependent tasks: Trace and contextual fear conditioning

    Get PDF
    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment la pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol\u27s disruption of trace conditioning at this age. Experiment 2a and b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol\u27s disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed. (C) 2015 Elsevier B.V. All rights reserved

    An animal model of fetal alcohol spectrum disorder: Trace conditioning as a window to inform memory deficits and intervention tactics

    Get PDF
    Animal models of Fetal Alcohol Spectrum Disorders (FASD) afford the unique capacity to precisely control timing of alcohol exposure and alcohol exposure amounts in the developing animal. These models have powerfully informed neurophysiological alterations associated with fetal and perinatal alcohol. In two experiments presented here we expand use of the Pavlovian Trace Conditioning procedure to examine cognitive deficits and intervention strategies in a rat model of FASD. Rat pups were exposed to 5 g/kg/day ethanol on postnatal days (PD) 4-9, simulating alcohol exposure in the third trimester in humans. During early adolescence, approximately PD 30, the rats were trained in the trace conditioning task in which a light conditioned stimulus (CS) and shock unconditioned stimulus (US) were paired but separated by a 10-s stimulus free trace interval. Learning was assessed in freezing behavior during shock-free tests. Experiment 1 revealed that neonatal ethanol exposure significantly impaired hippocampus-dependent trace conditioning relative to controls. In Experiment 2 a serial compound conditioning procedure known as \u27gap filling\u27 completely reversed the ethanol-induced deficit in trace conditioning. We also discuss prior data regarding the beneficial effects of supplemental choline and novel preliminary data regarding the pharmacological cognitive enhancer physostigmine, both of which mitigate the alcohol-induced cognitive deficit otherwise seen in trace conditioning controls. We suggest trace conditioning as a useful tool for characterizing some of the core cognitive deficits seen in FASD, and as a model for developing effective environmental as well as nutritional and pharmacological interventions. (C) 2014 Elsevier Inc. All rights reserved

    Deficits in trace fear conditioning in a rat model of fetal alcohol exposure: dose-response and timing effects

    Get PDF
    In humans, prenatal alcohol exposure can result in significant impairments in several types of learning and memory, including declarative and spatial memory. Animal models have been useful for confirming that many of the observed effects are the result of alcohol exposure, and not secondary to poor maternal nutrition or adverse home environments. Wagner and Hunt (2006) reported that rats exposed to ethanol during the neonatal period (postnatal days [PDs] 4-9) exhibited impaired trace fear conditioning when trained as adolescents, but were unaffected in delay fear conditioning. The present series of three experiments represent a more detailed analysis of ethanol-induced deficits in trace conditioning. In Experiment 1, the dose of ethanol given to neonates was varied (3.0, 4.0, or 5.0 g/kg/day). There was a dose-dependent reduction in trace conditioning, with the poorest performance observed in animals treated with the highest dose. In Experiment 2, it was found that the impairment in trace conditioning resulting from neonatal ethanol exposure was dependent on the duration of the trace interval used for training; less learning was evident in ethanol-exposed animals trained with longer trace interval durations. These results confirm other reports of delay-dependent memory deficits. Finally, Experiment 3 determined that ethanol exposure limited to the first half of the neonatal period (PDs 4-6) was more detrimental to later trace conditioning than exposure during the second half (PDs 7-9). These results support the hypothesis that trace-conditioning impairments resulting from early ethanol exposure are due to the drug\u27s teratogenic effects on the developing hippocampus, as the findings parallel those observed in animals with discrete hippocampal lesions. Comparisons between delay and trace fear-conditioning performance in animals exposed to ethanol during the brain growth spurt provide a model system to study both selective learning impairments and possible treatment approaches for humans with fetal alcohol spectrum disorders. (C) 2009 Elsevier Inc. All rights reserved

    Implicit Gender Bias, Engagement, and Protective Factors in STEM Faculty

    Get PDF
    The present study assessed implicit gender bias and job engagement among STEM faculty at a mid-size liberal arts university. Forty-nine faculty in each of the departments of natural and social sciences were assessed for implicit gender bias and job engagement. We found that men had greater implicit gender bias than women in the natural sciences. In addition, women in natural science departments felt marginally less engaged than women in social science departments. Women’s disengagement was positively associated with imposter phenomenon and perceived lack of control in departmental decisions. However, women who actively participated in a women’s organization or had an advocate had more positive psychological outcomes. These findings suggest that although women STEM faculty, particularly in the natural sciences, experience challenges, support provided by women’s organizations or advocates may be an important strategy to reduce the effects of these challenges

    Post-training ethanol disrupts trace conditioned fear in rats: Effects of timing of ethanol, dose and trace interval duration

    Get PDF
    Ethanol has complex effects on memory performance, although hippocampus-dependent memory may be especially vulnerable to disruption by acute ethanol intoxication occurring during or shortly after a training episode. In the present experiments, the effects of post-training ethanol on delay and trace fear conditioning were examined in adolescent rats. In Experiment 1, 30-day-old Sprague-Dawley rats were given delay or trace conditioning trials in which a 10 s flashing light CS was paired with a 0.5 mA shock US. For trace groups, the trace interval was 10 s. On days 31-33, animals were administered ethanol once daily (0.0 or 2.5 g/kg via intragastric intubation), and on day 34 animals were tested for CS-elicited freezing. Results showed that post-training ethanol affected the expression of trace, but had no effect on delay conditioned fear. Experiment 2 revealed that this effect was dose-dependent; doses lower than 2.5 g/kg were without effect. Experiment 3 evaluated whether proximity of ethanol to the time of training or testing was critical. Results show that ethanol administration beginning 24 h after training was more detrimental to trace conditioned freezing than administration that was delayed by 48 h. Finally, in Experiment 4 animals were trained with one of three different trace intervals: 1, 3 or 10 s. Results indicate that post-training administration of 2.5 g/kg ethanol disrupted trace conditioned fear in subjects trained with a 10 s, but not with a I or 3 s, trace interval. Collectively the results suggest that ethanol administration impairs post-acquisition memory processing of hippocampus-dependent trace fear conditioning. (C) 2008 Elsevier Inc. All rights reserved

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
    • …
    corecore