492 research outputs found

    Recycling and Recharging of Supreme Garnet in Abrasive Waterjet Machining

    Get PDF
    Abrasive waterjet (AWJ) technology is widely used for cutting technical materials, cleaning contaminated surfaces, polishing hard-to-machine materials, etc. However, its main disadvantage is high cutting cost. Therefore, recycling and recharging abrasives used in the AWJ cutting process have been subject to many studies. This chapter presents a study on the recycling and recharging of Supreme garnet (or IMC garnet) in abrasive waterjet machining. In this study, the reusability of the recycled and recharged garnet was explored. Also, the cutting performance and the cutting quality of the recycled and recharged abrasive were investigated. Finally, the optimum particle size for recycling and recharging was found

    Damage Detection in Structural Health Monitoring using Hybrid Convolution Neural Network and Recurrent Neural Network

    Get PDF
    The process of damage identification in Structural Health Monitoring (SHM) gives us a lot of practical information about the current status of the inspected structure. The target of the process is to detect damage status by processing data collected from sensors, followed by identifying the difference between the damaged and the undamaged states. Different machine learning techniques have been applied to attempt to extract features or knowledge from vibration data, however, they need to learn prior knowledge about the factors affecting the structure. In this paper, a novel method of structural damage detection is proposed using convolution neural network and recurrent neural network. A convolution neural network is used to extract deep features while recurrent neural network is trained to learn the long-term historical dependency in time series data. This method with combining two types of features increases discrimination ability when compares with it to deep features only. Finally, the neural network is applied to categorize the time series into two states - undamaged and damaged. The accuracy of the proposed method was tested on a benchmark dataset of Z24-bridge (Switzerland). The result shows that the hybrid method provides a high level of accuracy in damage identification of the tested structure

    Effect of phosphate fertilizer-coated Dicarboxylic Acid Polymer on rice yield and components under greenhouse conditions

    Get PDF
    A significant amount of phosphorus (P) becomes fixed by aluminium (Al) and iron (Fe) in acidic soils, leading to decreased efficiency in P utilization and subsequently lowering crop yield. Enhanced P fertilization offers a potential solution, as the dicarboxylic acid polymer (DCAP) coating on P fertilizer promotes increased plant productivity and more effective P utilization. The improvement achieved through enhanced P fertilization can contribute to higher rice yields in acidic soils, accompanied by an increase in P solubility. The study aimed to determine the impact of DCAP-mixed phosphate fertilizer on P uptake by plants, absorption efficiency, and rice yield. The results demonstrated a significant increase in available P (about 3.5 mg P/kg) when DCAP was used in a greenhouse setting, resulting in elevated yields and total P absorption (ranging from 0.03 to 0.05 grams/pot). However, the addition of 60 kg of phosphate mixed with DCAP has not yet demonstrated a significant increase in available phosphorus in the soil compared to adding just 60 kg of phosphate. The application of phosphate at a dose of 30 kg of P2O5 mixed with DCAP for growth and phosphorus absorption yield results equivalent to using 60 kg of P2O5 without DCAP. Furthermore, the use of DCAP in conjuction with 50% P fertilizer increased P availability by the same amount as that achieved with 100% P fertilizer. Consequently, DCAP reduced chemical P fertilizer in the soil by approximately 50%. However, it is essential to evaluate the effectiveness of mixed phosphate fertilizer (DCAP) under field conditions before recommending its widespread use

    On Throughput for UAV Relay Assisted for Use in Disaster Communications

    Get PDF
    In this paper, the system performance of an energy harvesting (EH) unmanned aerial vehicle (UAV) system for use in disasters was investigated. The communication protocol was divided into two phases. In the first phase, a UAV relay (UR) harvested energy from a power beacon (PB). In the second phase, a base station (BS) transmitted the signal to the UR using non-orthogonal multiple access (NOMA); then, the UR used its harvested energy from the first phase to transfer the signal to two sensor clusters, i.e., low-priority and high-priority clusters, via the decode-and-forward (DF) technique. A closed-form expression for the throughput of the cluster heads of these clusters was derived to analyze the system performance. Monte Carlo simulations were employed to verify our approach

    Experimental study of the long-term shortening of reinforced concrete columns under maintaining concentric axial load

    Get PDF
    This paper presents the results of an experimental study to measure the shortening of reinforced concrete (RC) columns under long-term maintaining concentric axial load. Long-term axial deformation due to shrinkage and creep of the concrete were recorded beside deformation due to mechanical load. Eight RC cylinder - columns (content of reinforcement 1.5% and 2%) with diameter of 150 mm and height of 600 mm were tested during the period of 600 days to determine their shortening. The experimental results showed that the long-term deformation of RC columns occurs primarily during the first year of loading. The deformation creep of concrete is much greater than the shrinkage deformation. The reinforcement content has a significant effect on the long-term deformation of concrete columns

    Experimental study of the long-term shortening of reinforced concrete columns under maintaining concentric axial load

    Get PDF
    This paper presents the results of an experimental study to measure the shortening of reinforced concrete (RC) columns under long-term maintaining concentric axial load. Long-term axial deformation due to shrinkage and creep of the concrete were recorded beside deformation due to mechanical load. Eight RC cylinder - columns (content of reinforcement 1.5% and 2%) with diameter of 150 mm and height of 600 mm were tested during the period of 600 days to determine their shortening. The experimental results showed that the long-term deformation of RC columns occurs primarily during the first year of loading. The deformation creep of concrete is much greater than the shrinkage deformation. The reinforcement content has a significant effect on the long-term deformation of concrete columns
    corecore