6,274 research outputs found

    Category-length and category-strength effects using images of scenes

    Get PDF
    Global matching models have provided an important theoretical framework for recognition memory. Key predictions of this class of models are that (1) increasing the number of occurrences in a study list of some items affects the performance on other items (list-strength effect) and that (2) adding new items results in a deterioration of performance on the other items (list-length effect). Experimental confirmation of these predictions has been difficult, and the results have been inconsistent. A review of the existing literature, however, suggests that robust length and strength effects do occur when sufficiently similar hard-to-label items are used. In an effort to investigate this further, we had participants study lists containing one or more members of visual scene categories (bathrooms, beaches, etc.). Experiments 1 and 2 replicated and extended previous findings showing that the study of additional category members decreased accuracy, providing confirmation of the category-length effect. Experiment 3 showed that repeating some category members decreased the accuracy of nonrepeated members, providing evidence for a category-strength effect. Experiment 4 eliminated a potential challenge to these results. Taken together, these findings provide robust support for global matching models of recognition memory. The overall list lengths, the category sizes, and the number of repetitions used demonstrated that scene categories are well-suited to testing the fundamental assumptions of global matching models. These include (A) interference from memories for similar items and contexts, (B) nondestructive interference, and (C) that conjunctive information is made available through a matching operation

    Ultraviolet spectroscopy of the brightest supergiants in M31 and M33

    Get PDF
    Ultraviolet spectroscopy from the IUE, in combination with groundbased visual and infrared photometry, are to determine the energy distributions of the luminous blue variables, the Hubble-Sandage variables, in M31 and M33. The observed energy distributions, especially in the ultraviolet, show that these stars are suffering interstellar reddening. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and black body temperatures of the stars. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the sub B01 vs. log T sub e diagram as do eta Car, P Cyg and S Dor in our galaxy and the LMC. Many of the Hubble-Sandage variables have excess infrared radiation which is attributed to free-free emission from their extended atmospheres. Rough mass loss estimates from the infrared excess yield rates of 0.00001 M sub annual/yr. The ultraviolet spectra of the H-S variables are also compared with similar spectra of eta Car, P Cyg and S For

    Estimating the Value of Medal Success at the 2010 Winter Olympic Games

    Get PDF
    We estimate Canadians’ willingness to pay (WTP) for success by Team Canada in the 2010 Winter Olympics. The Canadian government subsidized elite athletes in the run up to the 2010 Games through the Own the Podium program, which was designed to increase Canada’s medal count. WTP estimates from a contingent valuation method (CVM) study using data from nationally representative surveys before and after the Games suggest that Own the Podium generated intangible benefits of between 3 and 5 times its cost. The aggregate value of the intangible benefits generated by the program was between 719millionand719 million and 3.4 billion. Key Words: Olympic Games, contingent valuation method, willingness to pay

    Results of winglet development studies for DC-10 derivatives

    Get PDF
    The results of investigations into the application of winglets to the DC-10 aircraft are presented. The DC-10 winglet configuration was developed and its cruise performance determined in a previous investigation. This study included high speed and low speed wind tunnel tests to evaluate aerodynamic characteristics, and a subsonic flutter wind tunnel test with accompanying analysis and evaluation of results. Additionally, a configuration integration study employed the results of the wind tunnel studies to determine the overall impact of the installation of winglets on the DC-10 aircraft. Conclusions derived from the high speed and low speed tests indicate that the winglets had no significant effects on the DC-10 stability characteristics or high speed buffet. It was determined that winglets had a minimal effect on aircraft lift characteristics and improved the low speed aircraft drag under high lift conditions. The winglets affected the DC-10 flutter characteristics by reducing the flutter speed of the basic critical mode and introducing a new critical mode involving outer wing torsion and longitudinal bending. The overall impact of winglets was determined to be of sufficient benefit to merit flight evaluation

    VLBA imaging of the 3mm SiO maser emission in the disk-wind from the massive protostellar system Orion Source I

    Get PDF
    We present the first images of the 28SiO v=1, J=2-1 maser emission around the closest known massive young stellar object Orion Source I observed at 86 GHz (3mm) with the VLBA. These images have high spatial (~0.3 mas) and spectral (~0.054 km/s) resolutions. We find that the 3mm masers lie in an X-shaped locus consisting of four arms, with blue-shifted emission in the south and east arms and red-shifted emission in the north and west arms. Comparisons with previous images of the 28SiO v=1,2, J=1-0 transitions at 7mm (observed in 2001-2002) show that the bulk of the J=2-1 transition emission follows the streamlines of the J=1-0 emission and exhibits an overall velocity gradient consistent with the gradient at 7mm. While there is spatial overlap between the 3mm and 7mm transitions, the 3mm emission, on average, lies at larger projected distances from Source I (~44 AU compared with ~35 AU for 7mm). The spatial overlap between the v=1, J=1-0 and J=2-1 transitions is suggestive of a range of temperatures and densities where physical conditions are favorable for both transitions of a same vibrational state. However, the observed spatial offset between the bulk of emission at 3mm and 7mm possibly indicates different ranges of temperatures and densities for optimal excitation of the masers. We discuss different maser pumping models that may explain the observed offset. We interpret the 3mm and 7mm masers as being part of a single wide-angle outflow arising from the surface of an edge-on disk rotating about a northeast-southwest axis, with a continuous velocity gradient indicative of differential rotation consistent with a Keplerian profile in a high-mass proto-binary.Comment: 11 pages, 12 figures; accepted for publication in A&

    Search for LBV Candidates in the M33 Galaxy

    Full text link
    A total of 185 luminous blue variable (LBV) candidates with V < 18.5 and B-V < 0.35 are selected based on the photometrical Survey of Local Group Galaxies made by P. Massey et al. 2006. The candidates were selected using aperture photometry of H-alpha images. The primary selection criterion is that the prospective candidate should be a blue star with H-aplha emission. In order not to miss appreciably reddened LBV candidates, we compose an additional list of 25 presumably reddened (0.35 < B-V < 1.2, V < 18.5) emission star candidates. A comparison with the list of known variables in the M33 galaxy showed 29% of our selected candidates to be photometrically variable. We also find our list to agree well with the lists of emission-line objects obtained in earlier papers using different methods.Comment: 6 figure

    Coincident electron channeling and cathodoluminescence studies of threading dislocations in GaN

    Get PDF
    We combine two scanning electron microscopy techniques to investigate the influence of dislocations on the light emission from nitride semiconductors. Combining electron channeling contrast imaging and cathodoluminescence imaging enables both the structural and luminescence properties of a sample to be investigated without structural damage to the sample. The electron channeling contrast image is very sensitive to distortions of the crystal lattice, resulting in individual threading dislocations appearing as spots with black–white contrast. Dislocations giving rise to nonradiative recombination are observed as black spots in the cathodoluminescence image. Comparison of the images from exactly the same micron-scale region of a sample demonstrates a one-to-one correlation between the presence of single threading dislocations and resolved dark spots in the cathodoluminescence image. In addition, we have also obtained an atomic force microscopy image from the same region of the sample, which confirms that both pure edge dislocations and those with a screw component (i.e., screw and mixed dislocations) act as nonradiative recombination centers for the Si-doped c-plane GaN thin film investigated

    Banding in the Margins of Basaltic Dykes Indicates Pulsatory Propagation During Emplacement

    Get PDF
    Basaltic fissure eruptions, which are the most common type of eruption on Earth, are fed by dykes which mediate magma transport through the crust. Dyke propagation processes are important because they determine the geometry of the transport pathway and the nature of any geophysical signals associated with magma ascent. Here, we investigate small‐scale (mm–cm wide) banding features at the margins of dykes in the Teno Massif (Tenerife, Spain) and the Columbia River Basalt Province (CRBP) (USA). Similar marginal bands have been reported for dykes in numerous localities around the world. Dyke margins record valuable information about propagation because they are the first material to solidify against the host rock at the propagating dyke tip. We find that the marginal bands are defined by cyclic variations in phenocryst concentration and vesicularity, and we infer that these cyclic variations in texture are a product of cyclic variations in magma flow rates and pressures within the dyke tip. This indicates that dyke emplacement occurs in pulses, with propagation repeatedly hindered by the rapid cooling and solidification of magma in the narrow dyke tip. Using a 1D conduction model, we estimate the time taken for each band to cool and solidify, which provides a timescale of several minutes to tens of minutes for the pulses. The occurrence of similar bands in various volcanic settings suggests that pulsatory propagation is a common, if not ubiquitous, process associated with dyke emplacement
    • 

    corecore