69 research outputs found

    Evaluation of three reference genes of Escherichia coli for mRNA expression level normalization in view of salt and organic acid stress exposure in food

    Get PDF
    Escherichia coli can adapt to various stress conditions encountered in food through induction of stress response genes encoding proteins that counteract the respective stresses. To understand the impact and the induction of these genes under food-associated stresses, changes in the levels of their mRNA expression in response to such stresses can be analysed. Relative quantification of mRNA levels by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) requires normalization to reference genes with stable expression under the experimental conditions being investigated. We examined the validity of three housekeeping genes (cysG, hcaT and rssA) among E. coli strains exposed to salt and organic acid stress. The rssA gene was shown to be the most stably expressed gene under such stress adaptation experimental models. The cysG gene was the least stable, whereas the hcaT gene showed similar interstrain variability as rssA but lower expression stability in the different stress adaptation model

    Turn Up the Heat-Food and Clinical <em>Escherichia coli</em> Isolates Feature Two Transferrable Loci of Heat Resistance

    Get PDF
    Heat treatment is a widely used process to reduce bacterial loads in the food industry or to decontaminate surfaces, e.g., in hospital settings. However, there are situations where lower temperatures must be employed, for instance in case of food production such as raw milk cheese or for decontamination of medical devices such as thermo-labile flexible endoscopes. A recently identified locus of heat resistance (LHR) has been shown to be present in and confer heat resistance to a variety of Enterobacteriaceae, including Escherichia coli isolates from food production settings and clinical ESBL-producing E. coli isolates. Here, we describe the presence of two distinct LHR variants within a particularly heat resistant E. coli raw milk cheese isolate. We demonstrate for the first time in this species the presence of one of these LHRs on a plasmid, designated pFAM21805, also encoding type 3 fimbriae and three bacteriocins and corresponding self-immunity proteins. The plasmid was highly transferable to other E. coli strains, including Shiga-toxin-producing strains, and conferred LHR-dependent heat resistance as well as type 3 fimbriae-dependent biofilm formation capabilities. Selection for and acquisition of this “survival” plasmid by pathogenic organisms, e.g., in food production environments, may pose great concern and emphasizes the need to screen for the presence of LHR genes in isolates

    The role of bacteria and mycorrhiza in plant sulfur supply

    Get PDF
    peer-reviewedPlant growth is highly dependent on bacteria, saprophytic, and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S) in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax, and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted

    A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genome of <it>Pseudomonas aeruginosa </it>contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, <it>ppkA</it>, has been implicated in <it>P. aeruginosa </it>virulence. Together with the adjacent <it>pppA </it>phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a <it>pppA-ppkA </it>double mutant and characterised its phenotype and transcriptomic profiles.</p> <p>Results</p> <p>Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that <it>pppA-ppkA </it>deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the <it>pppA-ppkA </it>mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the <it>pppA </it>and <it>ppkA </it>genes were expressed ectopically.</p> <p>Conclusions</p> <p>Our results suggest that in addition to its crucial role in controlling the activity of <it>P. aeruginosa </it>H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.</p

    Complete genome sequence of Citrobacter freundii 705SK3, an OXA-48 encoding wastewater isolate

    Get PDF
    We present the genome sequence of Citrobacter freundii 705SK3, a wastewater isolate harboring an IncL OXA-48-encoding plasmid. Assembly of the genome resulted in a 5,242,839-bp circular chromosome (GC content, 52%) and two closed plasmids of 296,175 bp and 63, 458 bp in size

    Complete genome of Enterobacter cloacae 704SK10, an OXA-48 encoding wastewater isolate

    Get PDF
    Here we present the complete genome sequence of Enterobacter cloacae 704SK10, a Swiss wastewater isolate encoding an OXA-48 carbapenemase. Assembly resulted in closed sequences of the 4,876,946-bp chromosome, a 111,184-bp IncF plasmid, and an OXA-48-encoding IncL plasmid (63,458 bp) nearly identical to the previously described plasmid pOXA-48

    Complete genome sequence of Escherichia coli ABW A45, an rmtB encoding wastewater isolate

    Get PDF
    We present the complete genome sequence of Escherichia coli ABWA45, a 16S rRNA methyltransferase-producing wastewater isolate. Assembly and annotation resulted in a 5,094,639-bp circular chromosome and four closed plasmids of 145,220 bp, 113,793 bp, 57,232 bp, and 47,900 bp in size. Furthermore, a small open plasmid (7,537 bp in size) was assembled
    corecore