854 research outputs found
Bonding mechanism in the nitrides Ti2AlN and TiN: an experimental and theoretical investigation
The electronic structure of nanolaminate Ti2AlN and TiN thin films has been
investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured
Ti L, N K, Al L1 and Al L2,3 emission spectra are compared with calculated
spectra using ab initio density-functional theory including dipole transition
matrix elements. Three different types of bond regions are identified; a
relatively weak Ti 3d - Al 3p bonding between -1 and -2 eV below the Fermi
level, and Ti 3d - N 2p and Ti 3d - N 2s bonding which are deeper in energy
observed at -4.8 eV and -15 eV below the Fermi level, respectively. A strongly
modified spectral shape of 3s states of Al L2,3 emission from Ti2AlN in
comparison to pure Al metal is found, which reflects the Ti 3d - Al 3p
hybridization observed in the Al L1 emission. The differences between the
electronic and crystal structures of Ti2AlN and TiN are discussed in relation
to the intercalated Al layers of the former compound and the change of the
materials properties in comparison to the isostructural carbides.Comment: 18 pages, 7 figures;
http://link.aps.org/doi/10.1103/PhysRevB.76.19512
On spherical twisted conjugacy classes
Let G be a simple algebraic group over an algebraically closed field of good
odd characteristic, and let theta be an automorphism of G arising from an
involution of its Dynkin diagram. We show that the spherical theta-twisted
conjugacy classes are precisely those intersecting only Bruhat cells
corresponding to twisted involutions in the Weyl group. We show how the
analogue of this statement fails in the triality case. We generalize to good
odd characteristic J-H. Lu's dimension formula for spherical twisted conjugacy
classes.Comment: proof of Lemma 6.4 polished. The journal version is available at
http://www.springerlink.com/content/k573l88256753640
Cosmological Feedback from High-Redshift Dwarf Galaxies
We model how repeated supernova explosions in high-redshift dwarf starburst
galaxies drive superbubbles and winds out of the galaxies. We compute the
efficiencies of metal and mass ejection and energy transport from the galactic
potentials, including the effect of cosmological infall of external gas. The
starburst bubbles quickly blow out of small, high-redshift, galactic disks, but
must compete with the ram pressure of the infalling gas to escape into
intergalactic space. We show that the assumed efficiency of the star formation
rate dominates the bubble evolution and the metal, mass, and energy feedback
efficiencies. With star formation efficiency f*=0.01, the ram pressure of
infall can confine the bubbles around high-redshift dwarf galaxies with
circular velocities v_c>52 km/s. We can expect high metal and mass ejection
efficiencies, and moderate energy transport efficiencies in halos with
v_c~30-50 km/s and f*~0.01 as well as in halos with v_c~100 km/s and f*>>0.01.
Such haloes collapse successively from 1-2 sigma peaks in LambdaCDM Gaussian
density perturbations as time progresses. These dwarf galaxies can probably
enrich low and high-density regions of intergalactic space with metals to
10^-3-10^-2 Zsun as they collapse at z~8 and z<5 respectively. They also may be
able to provide adequate turbulent energy to prevent the collapse of other
nearby halos, as well as to significantly broaden Lyman-alpha absorption lines
to v_rms~20-40 km/s. We compute the timescales for the next starbursts if gas
freely falls back after a starburst, and find that, for star formation
efficiencies as low as f*<0.01, the next starburst should occur in less than
half the Hubble time at the collapse redshift. This suggests that episodic star
formation may be ubiquitous in dwarf galaxies.Comment: Accepted for ApJ v613, 60 pages, 15 figure
Molecular Hydrogen and Global Star Formation Relations in Galaxies
(ABRIDGED) We use hydrodynamical simulations of disk galaxies to study
relations between star formation and properties of the molecular interstellar
medium (ISM). We implement a model for the ISM that includes low-temperature
(T<10^4K) cooling, directly ties the star formation rate to the molecular gas
density, and accounts for the destruction of H2 by an interstellar radiation
field from young stars. We demonstrate that the ISM and star formation model
simultaneously produces a spatially-resolved molecular-gas surface density
Schmidt-Kennicutt relation of the form Sigma_SFR \propto Sigma_Hmol^n_mol with
n_mol~1.4 independent of galaxy mass, and a total gas surface density -- star
formation rate relation Sigma_SFR \propto Sigma_gas^n_tot with a power-law
index that steepens from n_tot~2 for large galaxies to n_tot>~4 for small dwarf
galaxies. We show that deviations from the disk-averaged Sigma_SFR \propto
Sigma_gas^1.4 correlation determined by Kennicutt (1998) owe primarily to
spatial trends in the molecular fraction f_H2 and may explain observed
deviations from the global Schmidt-Kennicutt relation.Comment: Version accepted by ApJ, high-res version available at
http://kicp.uchicago.edu/~brant/astro-ph/molecular_ism/rk2007.pd
Смертность населения от воздействия внешних причин как индикатор демографических угроз
СМЕРТНОСТЬДЕМОГРАФИЧЕСКАЯ СТАТИСТИКАНАСЕЛЕНИЕДЕМОГРАФИЧЕСКАЯ БЕЗОПАСНОСТЬТРУДОСПОСОБНЫЙ ВОЗРАСТЗДРАВООХРАНЕНИЕ РЕСПУБЛИКИ БЕЛАРУСЬСТАТИСТИЧЕСКИЙ АНАЛИ
Solubility limit and precipitate formation in Al-doped 4H-SiC epitaxial material
Heavily Al-doped 4H–SiC structures have been prepared by vapor phase epitaxy. Subsequent anneals have been carried out in an Ar atmosphere in a rf-heated furnace between 1500 °C and 2000 °C for 0.5 to 3 h. Secondary ion mass spectrometry has been utilized to obtain Al concentration versus depth as well as lateral distributions (ion images). Transmission electron microscopy(TEM) has been employed to study the crystallinity and determine phase composition after heat treatment. A solubility limit of ∼2×10²⁰ Al/cm³ (1900 °C) is extracted. Three-dimensional ion images show that the Al distribution does not remain homogeneous in layers heat treated at 1700 °C or above when the Al concentration exceeds 2×10²⁰ cm⁻³. Al-containing precipitates are identified by energy-filtered TEM.Financial support was partly received
from the Swedish Foundation for Strategic Research (SSF)
SiCEP program
- …