63 research outputs found

    transformations in the nuclear and bioenergy sectors in Sweden, Brazil, and the United States

    Get PDF
    Most of the controversies surrounding how to structure climate change mitigation and adaptation – including financing, what counts as action, and how to measure progress against uncertain goals – have technological change as an underlying assumption. Technological transformation is at the heart of mitigation in the energy system, and technological change (cultivars and management) will be a prime contributor to mitigation and adaptation in agriculture and water. Therefore, the issue of governing the diffusion of GEC- related technology is critically important. The standard analyses that assume we just need to “get the prices right” are insufficient in a world where markets are at best imperfect and equitable well-being is as much a goal as efficiency. Our research examines the ways in technological change is guided by such governance factors as governments (regulation and policy), firms with existing expertise and infrastructure, international and national needs for security, innovation networks, and leadership. We will illustrate the determinative nature of these governance factors through case studies of two major energy technologies – nuclear power and biofuels – in three countries – Brazil, Sweden, and the United States. Primary data comes from interviews with policymakers and firm managers who have been involved in these changes in the three countries. Open-ended and structured questions about a range of driving or enabling factors allow us to establish one or more configurations of factors that can inform the governance of future technological change related to mitigation and serve as the basis for further research into technological change related to adaptation

    Gene duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a

    Get PDF
    The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla) and kit ligand b (kitlb), and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb). In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor-ligand relationship, coevolved complementary expression patterns, and that functional analysis reveals that most or all of the kita receptor's function in the embryo are promoted by its interaction with kitla. © 2007 Hultman et al

    Renewable Energy in the Context of Sustainable Development

    Get PDF
    Historically, economic development has been strongly correlated with increasing energy use and growth of greenhouse gas (GHG) emissions. Renewable energy (RE) can help decouple that correlation, contributing to sustainable development (SD). In addition, RE offers the opportunity to improve access to modern energy services for the poorest members of society, which is crucial for the achievement of any single of the eight Millennium Development Goals. Theoretical concepts of SD can provide useful frameworks to assess the interactions between SD and RE. SD addresses concerns about relationships between human society and nature. Traditionally, SD has been framed in the three-pillar model—Economy, Ecology, and Society—allowing a schematic categorization of development goals, with the three pillars being interdependent and mutually reinforcing. Within another conceptual framework, SD can be oriented along a continuum between the two paradigms of weak sustainability and strong sustainability. The two paradigms differ in assumptions about the substitutability of natural and human-made capital. RE can contribute to the development goals of the three-pillar model and can be assessed in terms of both weak and strong SD, since RE utilization is defined as sustaining natural capital as long as its resource use does not reduce the potential for future harvest. The relationship between RE and SD can be viewed as a hierarchy of goals and constraints that involve both global and regional or local considerations. Though the exact contribution of RE to SD has to be evaluated in a country specifi c context, RE offers the opportunity to contribute to a number of important SD goals: (1) social and economic development; (2) energy access; (3) energy security; (4) climate change mitigation and the reduction of environmental and health impacts. The mitigation of dangerous anthropogenic climate change is seen as one strong driving force behind the increased use of RE worldwide. The chapter provides an overview of the scientific literature on the relationship between these four SD goals and RE and, at times, fossil and nuclear energy technologies. The assessments are based on different methodological tools, including bottom-up indicators derived from attributional lifecycle assessments (LCA) or energy statistics, dynamic integrated modelling approaches, and qualitative analyses. Countries at different levels of development have different incentives and socioeconomic SD goals to advance RE. The creation of employment opportunities and actively promoting structural change in the economy are seen, especially in industrialized countries, as goals that support the promotion of RE. However, the associated costs are a major factor determining the desirability of RE to meet increasing energy demand and concerns have been voiced that increased energy prices might endanger industrializing countries’ development prospects; this underlines the need for a concomitant discussion about the details of an international burden-sharing regime. Still, decentralized grids based on RE have expanded and already improved energy access in developing countries. Under favorable conditions, cost savings in comparison to non-RE use exist, in particular in remote areas and in poor rural areas lacking centralized energy access. In addition, non-electrical RE technologies offer opportunities for modernization of energy services, for example, using solar energy for water heating and crop drying, biofuels for transportation, biogas and modern biomass for heating, cooling, cooking and lighting, and wind for water pumping. RE deployment can contribute to energy security by diversifying energy sources and diminishing dependence on a limited number of suppliers, therefore reducing the economy’s vulnerability to price volatility. Many developing countries specifically link energy access and security issues to include stability and reliability of local supply in their definition of energy security. Supporting the SD goal to mitigate environmental impacts from energy systems, RE technologies can provide important benefits compared to fossil fuels, in particular regarding GHG emissions. Maximizing these benefits often depends on the specific technology, management, and site characteristics associated with each RE project, especially with respect to land use change (LUC) impacts. Lifecycle assessments for electricity generation indicate that GHG emissions from RE technologies are, in general, considerably lower than those associated with fossil fuel options, and in a range of conditions, less than fossil fuels employing carbon capture and storage (CCS). The maximum estimate for concentrating solar power (CSP), geothermal, hydropower, ocean and wind energy is less than or equal to 100 g CO2eq/kWh, and median values for all RE range from 4 to 46 g CO2eq/kWh. The GHG balances of bioenergy production, however, have considerable uncertainties, mostly related to land management and LUC. Excluding LUC, most bioenergy systems reduce GHG emissions compared to fossil-fueled systems and can lead to avoided GHG emissions from residues and wastes in landfill disposals and co-products; the combination of bioenergy with CCS may provide for further reductions. For transport fuels, some first-generation biofuels result in relatively modest GHG mitigation potential, while most next-generation biofuels could provide greater climate benefits. To optimize benefits from bioenergy production, it is critical to reduce uncertainties and to consider ways to mitigate the risk of bioenergy-induced LUC. RE technologies can also offer benefits with respect to air pollution and health. Non-combustion-based RE power generation technologies have the potential to significantly reduce local and regional air pollution and lower associated health impacts compared to fossil-based power generation. Impacts on water and biodiversity, however, depend on local conditions. In areas where water scarcity is already a concern, non-thermal RE technologies or thermal RE technologies using dry cooling can provide energy services without additional stress on water resources. Conventional water-cooled thermal power plants may be especially vulnerable to conditions of water scarcity and climate change. Hydropower and some bioenergy systems are dependent on water availability, and can either increase competition or mitigate water scarcity. RE specific impacts on biodiversity may be positive or negative; the degree of these impacts will be determined by site-specific conditions. Accident risks of RE technologies are not negligible, but the technologies’ often decentralized structure strongly limits the potential for disastrous consequences in terms of fatalities. However, dams associated with some hydropower projects may create a specific risk depending on site-specific factors. The scenario literature that describes global mitigation pathways for RE deployment can provide some insights into associated SD implications. Putting an upper limit on future GHG emissions results in welfare losses (usually measured as gross domestic product or consumption foregone), disregarding the costs of climate change impacts. These welfare losses are based on assumptions about the availability and costs of mitigation technologies and increase when the availability of technological alternatives for constraining GHGs, for example, RE technologies, is limited. Scenario analyses show that developing countries are likely to see most of the expansion of RE production. Increasing energy access is not necessarily beneficial for all aspects of SD, as a shift to modern energy away from, for example, traditional biomass could simply be a shift to fossil fuels. In general, available scenario analyses highlight the role of policies and finance for increased energy access, even though forced shifts to RE that would provide access to modern energy services could negatively affect household budgets. To the extent that RE deployment in mitigation scenarios contributes to diversifying the energy portfolio, it has the potential to enhance energy security by making the energy system less susceptible to (sudden) energy supply disruption. In scenarios, this role of RE will vary with the energy form. With appropriate carbon mitigation policies in place, electricity generation can be relatively easily decarbonized through RE sources that have the potential to replace concentrated and increasingly scarce fossil fuels in the building and industry sectors. By contrast, the demand for liquid fuels in the transport sector remains inelastic if no technological breakthrough can be achieved. Therefore oil and related energy security concerns are likely to continue to play a role in the future global energy system; as compared to today these will be seen more prominently in developing countries. In order to take account of environmental and health impacts from energy systems, several models have included explicit representation of these, such as sulphate pollution. Some scenario results show that climate policy can help drive improvements in local air pollution (i.e., particulate matter), but air pollution reduction policies alone do not necessarily drive reductions in GHG emissions. Another implication of some potential energy trajectories is the possible diversion of land to support biofuel production. Scenario results have pointed at the possibility that climate policy could drive widespread deforestation if not accompanied by other policy measures, with land use being shifted to bioenergy crops with possibly adverse SD implications, including GHG emissions. 712 Renewable Energy in the Context of Sustainable Development Chapter 9 The integration of RE policies and measures in SD strategies at various levels can help overcome existing barriers and create opportunities for RE deployment in line with meeting SD goals. In the context of SD, barriers continue to impede RE deployment. Besides market-related and economic barriers, those barriers intrinsically linked to societal and personal values and norms will fundamentally affect the perception and acceptance of RE technologies and related deployment impacts by individuals, groups and societies. Dedicated communication efforts are therefore a crucial component of any transformation strategy and local SD initiatives can play an important role in this context. At international and national levels, strategies should include: the removal of mechanisms that are perceived to work against SD; mechanisms for SD that internalize environmental and social externalities; and RE strategies that support low-carbon, green and sustainable development including leapfrogging. The assessment has shown that RE can contribute to SD to varying degrees; more interdisciplinary research is needed to close existing knowledge gaps. While benefi ts with respect to reduced environmental and health impacts may appear more clear-cut, the exact contribution to, for example, social and economic development is more ambiguous. In order to improve the knowledge regarding the interrelations between SD and RE and to fi nd answers to the question of an effective, economically effi cient and socially acceptable transformation of the energy system, a much closer integration of insights from social, natural and economic sciences (e.g., through risk analysis approaches), refl ecting the different (especially intertemporal, spatial and intra-generational) dimensions of sustainability, is required. So far, the knowledge base is often limited to very narrow views from specifi c branches of research, which do not fully account for the complexity of the issue

    A research roadmap for quantifying non-state and subnational climate mitigation action

    Get PDF
    Non-state and subnational climate actors have become central to global climate change governance. Quantitatively assessing climate mitigation undertaken by these entities is critical to understand the credibility of this trend. In this Perspective, we make recommendations regarding five main areas of research and methodological development related to evaluating non-state and subnational climate actions: defining clear boundaries and terminology; use of common methodologies to aggregate and assess non-state and subnational contributions; systematically dealing with issues of overlap; estimating the likelihood of implementation; and addressing data gaps

    Climate Change Meets the Law of the Horse

    Get PDF
    The climate change policy debate has only recently turned its full attention to adaptation - how to address the impacts of climate change we have already begun to experience and that will likely increase over time. Legal scholars have in turn begun to explore how the many different fields of law will and should respond. During this nascent period, one overarching question has gone unexamined: how will the legal system as a whole organize around climate change adaptation? Will a new distinct field of climate change adaptation law and policy emerge, or will legal institutions simply work away at the problem through unrelated, duly self-contained fields, as in the famous Law of the Horse? This Article is the first to examine that question comprehensively, to move beyond thinking about the law and climate change adaptation to consider the law of climate change adaptation. Part I of the Article lays out our methodological premises and approach. Using a model we call Stationarity Assessment, Part I explores how legal fields are structured and sustained based on assumptions about the variability of natural, social, and economic conditions, and how disruptions to that regime of variability can lead to the emergence of new fields of law and policy. Case studies of environmental law and environmental justice demonstrate the model’s predictive power for the formation of new distinct legal regimes. Part II applies the Stationarity Assessment model to the topic of climate change adaptation, using a case study of a hypothetical coastal region and the potential for climate change impacts to disrupt relevant legal doctrines and institutions. We find that most fields of law appear capable of adapting effectively to climate change. In other words, without some active intervention, we expect the law and policy of climate change adaptation to follow the path of the Law of the Horse - a collection of fields independently adapting to climate change - rather than organically coalescing into a new distinct field. Part III explores why, notwithstanding this conclusion, it may still be desirable to seek a different trajectory. Focusing on the likelihood of systemic adaptation decisions with perverse, harmful results, we identify the potential benefits offered by intervening to shape a new and distinct field of climate change adaptation law and policy. Part IV then identifies the contours of such a field, exploring the distinct purposes of reducing vulnerability, ensuring resiliency, and safeguarding equity. These features provide the normative policy components for a law of climate change adaptation that would be more than just a Law of the Horse. This new field would not replace or supplant any existing field, however, as environmental law did with regard to nuisance law, and it would not be dominated by substantive doctrine. Rather, like the field of environmental justice, this new legal regime would serve as a holistic overlay across other fields to ensure more efficient, effective, and just climate change adaptation solutions

    Exome sequencing and the genetic basis of complex traits

    Get PDF
    Exome sequencing is emerging as a popular approach to study the effect of rare coding variants on complex phenotypes. The promise of exome sequencing is grounded in theoretical population genetics and in empirical successes of candidate gene sequencing studies. Many projects aimed at common diseases are underway, and their results are eagerly anticipated. In this Perspective, using exome sequencing data from 438 individuals, we discuss several aspects of exome sequencing studies that we view as particularly important. We review processing and quality control of raw sequence data, evaluate the statistical properties of exome sequencing studies, discuss rare variant burden tests to detect association to phenotypes, and demonstrate the importance of accounting for population stratification in the analysis of rare variants. We conclude that enthusiasm for exome sequencing studies of complex traits should be combined with the caution that thousands of samples may be required to reach sufficient statistical power

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
    corecore