355 research outputs found

    Fee Arrangements and Fee Shifting: Lessons From the Experience in Ontario

    Get PDF
    About one-third of oestrogen receptor alpha-positive breast cancer patients treated with tamoxifen relapse. Here we identify the nuclear receptor retinoic acid receptor alpha as a marker of tamoxifen resistance. Using quantitative mass spectrometry-based proteomics, we show that retinoic acid receptor alpha protein networks and levels differ in a tamoxifen-sensitive (MCF7) and a tamoxifen-resistant (LCC2) cell line. High intratumoural retinoic acid receptor alpha protein levels also correlate with reduced relapse-free survival in oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen solely. A similar retinoic acid receptor alpha expression pattern is seen in a comparable independent patient cohort. An oestrogen receptor alpha and retinoic acid receptor alpha ligand screening reveals that tamoxifen-resistant LCC2 cells have increased sensitivity to retinoic acid receptor alpha ligands and are less sensitive to oestrogen receptor alpha ligands compared with MCF7 cells. Our data indicate that retinoic acid receptor alpha may be a novel therapeutic target and a predictive factor for oestrogen receptor alpha-positive breast cancer patients treated with adjuvant tamoxifen

    [(2R,3S,6S)-3-Acet­yloxy-6-(1-phenyl-1H-1,2,3-triazol-4-yl)-3,6-dihydro-2H-pyran-2-yl]methyl acetate

    Get PDF
    In the title compound, C18H19N3O5, the 3,6-dihydro-2H-pyran ring adopts a half-chair, distorted towards a half-boat, conformation with Q T = 0.5276(14) Å. The benzene ring is twisted out of the place of the triazole ring [dihedral angle = 23.54 (8)°]. In the crystal, supra­molecular layers in the ac plane are formed through C—H⋯O and C—H⋯π(triazole) inter­actions. These stack along the b axis being connected by C—H⋯N contacts

    Comparing reactogenicity of COVID-19 vaccine boosters: a systematic review and meta-analysis.

    Get PDF
    INTRODUCTION: Different COVID-19 vaccines are being utilized as boosters. This systematic review and meta-analysis aims to evaluate the reactogenicity of COVID-19 vaccines given as booster doses, according to vaccine type, dose, timing, participant characteristics and primary immunization regimen received. METHODS: Four databases (MEDLINE, Embase, Web of Science and CENTRAL) were searched for randomized controlled trials between 1 January 2020 and 1 January 2023 according to predetermined criteria. RESULTS: Twenty-eight studies describing 19 vaccines of four different types (viral vector, inactivated, mRNA and protein sub-unit) were identified. BNT162b2 vaccine (Pfizer-BioNTech) was selected as the control as it was most often compared with other vaccines. Fever, fatigue, headache, injection-site pain, redness and swelling were the most frequently reported solicited events. mRNA vaccines were the most reactogenic, followed by viral vector vaccines and protein sub-unit vaccines, while inactivated vaccines were the least reactogenic. Full-dose vaccines were more reactogenic than half-dose vaccines. Heterologous BNT162b2 boosters were more reactogenic than boosters with the same vaccine used for primary immunization. CONCLUSIONS: COVID-19 vaccine booster schedules have distinct reactogenicity profiles, dependent on dose and vaccine type, which may allow targeted recommendations and provide choice for specific populations. Greater standardization of adverse event reporting will aid future studies

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    Naming a phantom – the quest to find the identity of Ulluchu, an unidentified ceremonial plant of the Moche culture in Northern Peru

    Get PDF
    The botanical identification of Ulluchu, an iconic fruit frequently depicted in the art of the pre-Columbian Moche culture that flourished from A.D. 100–800 on the Peruvian north coast, has eluded scientists since its documentation in ceramics in the 1930s. Moche fine-line drawings of Ulluchu normally depict seed-pods or seeds floating in the air in sacrificial scenes, associated with runners and messengers or intoxicated priests. It is a grooved, comma-shaped fruit with an enlarged calyx found mainly in fine-line scenes painted on Moche ceramics. The term first appeared without linguistic explanation in the work of pioneer Moche scholar Rafael Larco Hoyle, and the identification of the plant was seen as the largest remaining challenge in current archaebotany at the Peruvian North coast. The name Ulluchu seems to have been coined by Larco. According to his description, the name originated in the Virú River valley, and is supposedly of Mochica origin. However, there is no linguistic evidence that such a term indeed existed in the Mochica or Yunga language

    Quantitative evaluation of oligonucleotide surface concentrations using polymerization-based amplification

    Get PDF
    Quantitative evaluation of minimal polynucleotide concentrations has become a critical analysis among a myriad of applications found in molecular diagnostic technology. Development of high-throughput, nonenzymatic assays that are sensitive, quantitative and yet feasible for point-of-care testing are thus beneficial for routine implementation. Here, we develop a nonenzymatic method for quantifying surface concentrations of labeled DNA targets by coupling regulated amounts of polymer growth to complementary biomolecular binding on array-based biochips. Polymer film thickness measurements in the 20–220 nm range vary logarithmically with labeled DNA surface concentrations over two orders of magnitude with a lower limit of quantitation at 60 molecules/μm2 (∼106 target molecules). In an effort to develop this amplification method towards compatibility with fluorescence-based methods of characterization, incorporation of fluorescent nanoparticles into the polymer films is also evaluated. The resulting gains in fluorescent signal enable quantification using detection instrumentation amenable to point-of-care settings

    A Deletion in the N-Myc Downstream Regulated Gene 1 (NDRG1) Gene in Greyhounds with Polyneuropathy

    Get PDF
    The polyneuropathy of juvenile Greyhound show dogs shows clinical similarities to the genetically heterogeneous Charcot-Marie-Tooth (CMT) disease in humans. The pedigrees containing affected dogs suggest monogenic autosomal recessive inheritance and all affected dogs trace back to a single male. Here, we studied the neuropathology of this disease and identified a candidate causative mutation. Peripheral nerve biopsies from affected dogs were examined using semi-thin histology, nerve fibre teasing and electron microscopy. A severe chronic progressive mixed polyneuropathy was observed. Seven affected and 17 related control dogs were genotyped on the 50k canine SNP chip. This allowed us to localize the causative mutation to a 19.5 Mb interval on chromosome 13 by homozygosity mapping. The NDRG1 gene is located within this interval and NDRG1 mutations have been shown to cause hereditary motor and sensory neuropathy-Lom in humans (CMT4D). Therefore, we considered NDRG1 a positional and functional candidate gene and performed mutation analysis in affected and control Greyhounds. A 10 bp deletion in canine NDRG1 exon 15 (c.1080_1089delTCGCCTGGAC) was perfectly associated with the polyneuropathy phenotype of Greyhound show dogs. The deletion causes a frame shift (p.Arg361SerfsX60) which alters several amino acids before a stop codon is encountered. A reduced level of NDRG1 transcript could be detected by RT-PCR. Western blot analysis demonstrated an absence of NDRG1 protein in peripheral nerve biopsy of an affected Greyhound. We thus have identified a candidate causative mutation for polyneuropathy in Greyhounds and identified the first genetically characterized canine CMT model which offers an opportunity to gain further insights into the pathobiology and therapy of human NDRG1 associated CMT disease. Selection against this mutation can now be used to eliminate polyneuropathy from Greyhound show dogs
    corecore