15 research outputs found

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    An osteopontin-derived peptide inhibits human hair growth at least in part by decreasing fibroblast growth factor-7 production in outer root sheath keratinocytes

    No full text
    Background: Given that unwanted hair growth (hirsutism, hypertrichosis) can cause major psychological distress, new pharmacological treatment strategies with safe and effective hair growth inhibitors that do not destroy the hair follicle (HF) and its stem cells need to be developed. Objectives: To establish if osteopontin-derived fragments may modulate human hair growth given that human HFs express the multifunctional, immunomodulatory glycoprotein, osteopontin. Methods: Our hypothesis was tested ex vivo and in vivo by using a newly generated, toxicologically well-characterized, modified osteopontin-derived peptide (FOL-005), which binds to the HF. Results: In organ-cultured human HFs and scalp skin, and in human scalp skin xenotransplants onto SCID mice, FOL-005 treatment (60 nmol L−1 to 3 μmol L−1) significantly promoted premature catagen development without reducing the number of keratin 15-positive HF stem cells or showing signs of drug toxicity. Genome-wide DNA microarray, quantitative reverse-transcriptase polymerase chain reaction and immunohistochemistry revealed decreased expression of the hair growth promoter, fibroblast growth factor-7 (FGF7) by FOL-005, while cotreatment of HFs with recombinant FGF7 partially abrogated FOL-005-induced catagen promotion. Conclusions: With caveats in mind, our study identifies this osteopontin-derived peptide as an effective, novel inhibitory principle for human hair growth ex vivo and in vivo, which deserves systematic clinical testing in hirsutism and hypertrichosis. What's already known about this topic?. The treatment of unwanted hair growth (hypertrichosis, hirsutism) lacks pharmacological intervention, with only few and often unsatisfactory treatments available. Osteopontin is prominently expressed in human HFs and has been reported to be elevated during catagen in the murine hair cycle. What does this study add?. We tested the effects on hair growth of a novel, osteopontin-derived fragment (FOL-005) ex vivo and in vivo. In human hair follicles, high-dose FOL-005 significantly reduces hair growth both ex vivo and in vivo. What is the translational message?. High-dose FOL-005 may provide a new therapeutic opportunity as a treatment for unwanted hair growth

    Cartilage oligomeric matrix protein associates with a vulnerable plaque phenotype in human atherosclerotic plaques

    No full text
    Background and Purpose- Extracellular matrix proteins are important in atherosclerotic disease by influencing plaque stability and cellular behavior but also by regulating inflammation. COMP (cartilage oligomeric matrix protein) is present in healthy human arteries and expressed by smooth muscle cells. A recent study showed that transplantation of COMP-deficient bone marrow to apoE-/- mice increased atherosclerotic plaque formation, indicating a role for COMP also in bone marrow-derived cells. Despite the evidence of a role for COMP in murine atherosclerosis, knowledge is lacking about the role of COMP in human atherosclerotic disease. Methods- In the present study, we investigated if COMP was associated with a stable or a vulnerable human atherosclerotic plaque phenotype by analyzing 211 carotid plaques for COMP expression using immunohistochemistry. Results- Plaque area that stained positive for COMP was significantly larger in atherosclerotic plaques associated with symptoms (n=110) compared with asymptomatic plaques (n=101; 9.7% [4.7-14.3] versus 5.6% [2.8-9.8]; P=0.0002). COMP was positively associated with plaque lipids (r=0.32; P=0.000002) and CD68 cells (r=0.15; P=0.036) but was negatively associated with collagen (r=-0.16; P=0.024), elastin (r=-0.14; P=0.041), and smooth muscle cells (r=-0.25; P=0.0002). COMP was positively associated with CD163 (r=0.37; P=0.00000006), a scavenger receptor for hemoglobin/haptoglobin and a marker of Mhem macrophages, and with intraplaque hemorrhage, measured as glycophorin A staining (r=0.28; P=0.00006). Conclusions- The present study shows that COMP is associated to symptomatic carotid atherosclerosis, CD163-expressing cells, and a vulnerable atherosclerotic plaque phenotype in humans

    Upregulated TRPC1 Channel in Vascular Injury In Vivo and Its Role in Human Neointimal Hyperplasia.

    No full text
    Occlusive vascular disease is a widespread abnormality leading to lethal or debilitating outcomes such as myocardial infarction and stroke. It is part of atherosclerosis and is evoked by clinical procedures including angioplasty and grafting of saphenous vein in bypass surgery. A causative factor is the switch in smooth muscle cells to an invasive and proliferative mode, leading to neointimal hyperplasia. Here we reveal the importance to this process of TRPC1, a homolog of Drosophila transient receptor potential. Using 2 different in vivo models of vascular injury in rodents we show hyperplasic smooth muscle cells have upregulated TRPC1 associated with enhanced calcium entry and cell cycle activity. Neointimal smooth muscle cells after balloon angioplasty of pig coronary artery also express TRPC1. Furthermore, human vein samples obtained during coronary artery bypass graft surgery commonly exhibit an intimal structure containing smooth muscle cells that expressed more TRPC1 than the medial layer cells. Veins were organ cultured to allow growth of neointimal smooth muscle cells over a 2-week period. To explore the functional relevance of TRPC1, we used a specific E3-targeted antibody to TRPC1 and chemical blocker 2-aminoethoxydiphenyl borate. Both agents significantly reduced neointimal growth in human vein, as well as calcium entry and proliferation of smooth muscle cells in culture. The data suggest upregulated TRPC1 is a general feature of smooth muscle cells in occlusive vascular disease and that TRPC1 inhibitors have potential as protective agents against human vascular failure

    Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia

    No full text
    Occlusive vascular disease is a widespread abnormality leading to lethal or debilitating outcomes such as myocardial infarction and stroke. It is part of atherosclerosis and is evoked by clinical procedures including angioplasty and grafting of saphenous vein in bypass surgery. A causative factor is the switch in smooth muscle cells to an invasive and proliferative mode, leading to neointimal hyperplasia. Here we reveal the importance to this process of TRPC1, a homolog of Drosophila transient receptor potential. Using 2 different in vivo models of vascular injury in rodents we show hyperplasic smooth muscle cells have upregulated TRPC1 associated with enhanced calcium entry and cell cycle activity. Neointimal smooth muscle cells after balloon angioplasty of pig coronary artery also express TRPC1. Furthermore, human vein samples obtained during coronary artery bypass graft surgery commonly exhibit an intimal structure containing smooth muscle cells that expressed more TRPC1 than the medial layer cells. Veins were organ cultured to allow growth of neointimal smooth muscle cells over a 2-week period. To explore the functional relevance of TRPC1, we used a specific E3-targeted antibody to TRPC1 and chemical blocker 2-aminoethoxydiphenyl borate. Both agents significantly reduced neointimal growth in human vein, as well as calcium entry and proliferation of smooth muscle cells in culture. The data suggest upregulated TRPC1 is a general feature of smooth muscle cells in occlusive vascular disease and that TRPC1 inhibitors have potential as protective agents against human vascular failure
    corecore